

Program Overview Guide Updated Edition

SAVVAS

Acknowledgments

xviii Savvas Education. Photo by Andrew Wallace; 9 ifong/Shutterstock; 13 Savvas Education. Photo by Andrew Wallace; 76 Killroy/iStockphoto; 132 ifong/Shutterstock; 142 Monkey Business Images/ Shutterstock

> This work is protected by United States copyright laws and is provided solely for the use of teachers and administrators in teaching courses and assessing student learning in their classes and schools. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted.

Copyright © 2015 Savvas Education, Inc., or its affiliates. All Rights Reserved. Printed in the United States of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, write to Rights Management \& Contracts, Savvas Education Inc., One Lake Street, Upper Saddle River, New Jersey 07458.

Common Core State Standards: © Copyright 2010. National Governors Association Center for Best Practices and Council of Chief State School Officers. All rights reserved.
"Understanding by Design" is a registered as a trademark with the United States Patent and Trademark Office by the Association for Supervision and Curriculum Development (ASCD). ASCD claims exclusive trademark right in the terms "Understanding by Design" and the abbreviation "UbD."

Savvas Education has incorporated the concepts of the Understanding by Design methodology into this material in consultation with contributing author Grant Wiggins, one of the creators of the Understanding by Design methodology. The Association for Supervision and Curriculum Development (ASCD), publisher of the Understanding by Design Handbook co-authored by Grant Wiggins, has not authorized, approved or sponsored this work and is in no way affiliated with Savvas or its products.

Savvas, Prentice Hall, and Savvas Prentice Hall are trademarks, in the U.S. and/or other countries, of Savvas Education, Inc., or its affiliates.

For information regarding permissions, write to Rights Management \& Contracts, Savvas Education Inc., 221 River Street, Hoboken, New Jersey 07030.

Encourage students to go online for cool digits stuff!

Be sure to remind them to save their login information by writing it in their Student Companion books.

Students should log into MyMathUniverse.com to get started. From there they can explore the Channel List, which includes fun and interactive games and videos, or they can select their digits program and log in.

Play some cool math games!
Complete homework online!
Discover math tricks and tips!
Check out fun videos!

Contents

Authors and Advisors vi digits Grade Level Contents viii

Overview

1 The Role of Classroom Technology

2 Research and Policy
3 Common Core State Standards

5 Understanding by Design Principles

Mathematics Content

12 Building to the Common Core State Standards
14 Common Core State Standards for Mathematical Practice

30 Grade 6 Correlations
38 Grade 7 Correlations
6 Foundational Research
9 Developing digits
9 Gathering Input
10 Iterative Field Testing
11 Evaluation
46 Grade 8 Correlations
54 Accelerated Grade 7
55 Accelerated Grade 7 Correlations
68 Intervention Scope and Sequence
72 Readiness Assessments and Intervention Lessons

Instructional Framework

77 interACTIVE Learning
78 interACTIVE Instruction
79 Elements of Understanding by Design
80 Launch
82 Examples
84 Close and Check
85 Topic Review
86 interACTIVE Learning Cycle
88 Response to Intervention
90 Program Structure
91 Traditional Scheduling Pacing Guides
103 Block Scheduling Pacing Guides
115 Year-Long Curriculum Guides

127 Progress Monitoring

127 Homework and Practice
128 Assessments
129 Scoring and Reporting
131 Assessing the Standards of Mathematical Practice

132 Components
134 Differentiating Instruction
134 Learner Levels and Study Plan
135 Delivering Readiness Lessons
138 Delivering Intervention Lessons
141 Assigning a Topic Test with Study Plan

141 Challenging Gifted Students

Supporting English Language Learners

143 English Language Learners
in the Math Classroom

144 English Language Learners
144 Mathematics and Language
145 The Challenges of Academic Language

147 Opportunities for Extending Language

148 Access Content
149 The Knowledge Base
150 The Pearson ELL Curriculum Framework

153 Five Essential Principles for Building ELL Lessons

153 Principle 1 Identify and Communicate Content and Language Objectives

156 Principle 2 Frontload the Lesson
159 Principle 3 Provide Comprehensible Input

162 Principle 4 Enable Language Production

165 Principle 5 Access for Content and Language Understanding

Appendix

168 Parent Letter

Authors and Advisors

Francis (Skip) Fennell digits Author

Approaches to mathematics content and curriculum, educational policy, and support for intervention

Dr. Francis (Skip) Fennell is Professor of Education at McDaniel College, and a senior author with Savvas. He is a past president of the National Council of Teachers of Mathematics (NCTM) and a member of the writing team for the Curriculum Focal Points from the NCTM, which influenced the work of the Common Core Standards Initiative. Skip was also one of the writers of the Principles and Standards for School Mathematics.

Art Johnson
digits Author
Approaches to mathematical content and support for English Language Learners

Art Johnson is a Professor of Mathematics at Boston University who taught in public school for over 30 years. He is part of the author team for Pearson's high school mathematics series. Art is the author of numerous books, including Teaching Mathematics to Culturally and Linguistically Diverse Students published by Allyn \& Bacon, Teaching Today's Mathematics in the Middle Grades published by Allyn \& Bacon, and Guiding Children's Learning of Mathematics, K-6 published by Wadsworth.

Helene Sherman
digits Author
Teacher education and support for struggling students

Helene Sherman is Associate Dean for Undergraduate Education and Professor of Education in the College of Education at the University of Missouri in St. Louis, MO. Helene is the author of Teaching Learners Who Struggle with Mathematics, published by Merrill.

Stuart J. Murphy
digits Author
Visual learning and
student engagement

Stuart J. Murphy is a visual learning specialist and the author of the MathStart series. He contributed to the development of the Visual Learning Bridge in enVisionMATH ${ }^{\top M}$ as well as many visual elements of the Prentice Hall Algebra 1, Geometry, and Algebra 2 high school program.

Janie Schielack digits Author

Approaches to mathematical content, building problem solvers, and support for intervention

Janie Schielack is Professor of Mathematics and Associate Dean for Assessment and PreK-12 Education at Texas A\&M University. She chaired the writing committee for the NCTM Curriculum Focal Points and was part of the nine-member NCTM feedback and advisory team that responded to and met with CCSSCO and NGA representatives during the development of various drafts of the Common Core State Standards.

Eric Milou

 digits AuthorApproaches to mathematical content and the use of technology in middle grades classrooms

Eric Milou is Professor in the Department of Mathematics at Rowan University in Glassboro, NJ. Eric teaches pre-service teachers and works with in-service teachers, and is primarily interested in balancing concept development with skill proficiency. He was part of the nine-member NCTM feedback/advisory team that responded to and met with Council of Chief State School Officers (CCSSCO) and National Governors Association (NGA) representatives during the development of various drafts of the Common Core State Standards. Eric is the author of Teaching Mathematics to Middle School Students, published by Allyn \& Bacon.

William F. Tate

 digits AuthorApproaches to intervention, and use of efficacy and research

William Tate is the Edward Mallinckrodt Distinguished University Professor in Arts \& Sciences at Washington University in St. Louis, MO. He is a past president of the American Educational Research Association. His research focuses on the social and psychological determinants of mathematics achievement and attainment as well as the political economy of schooling.

\int Savvas tapped leaders in

 mathematics education to develop digits. This esteemed author teamfrom diverse areas of expertise including mathematical content, Understanding by Design, and Technology Engagement-came together to construct a highly interactive and personalized learning experience.

Grant Wiggins digits Consulting Author
Understanding by Design

Grant Wiggins is a cross-curricular Savvas consulting author specializing in curricular change. He is the author of Understanding by Design published by ASCD, and the President of Authentic Education in Hopewell, NJ. Over the past 20 years, he has worked on some of the most influential reform initiatives in the country, including Vermont's portfolio system and Ted Sizer's Coalition of Essential Schools.

Randall I. Charles digits Advisor

Dr. Randall I. Charles is Professor Emeritus in the Department of Mathematics at San Jose State University in San Jose, CA, and a senior author with Savvas. Randall served on the writing team for the Curriculum Focal Points from NCTM. The NCTM Curriculum Focal Points served as a key inspiration to the writers of the Common Core Standards in bringing focus, depth, and coherence to the curriculum.

Jim Cummins digits Advisor

Supporting English
Language Learners

Dr. Jim Cummins is Professor and Canada Research Chair in the Centre for Educational Research on Languages and Literacies at the University of Toronto. His research focuses on literacy development in multilingual school contexts as well as on the potential roles of technology in promoting language and literacy development.

Jacquie Moen is a consultant specializing in how consumers interact with and use digital technologies. Jacquie worked for AOL for 10 years, and most recently was VP \& General Manager for AOL's kids and teen online services, reaching over seven million kids every month. Jacquie has worked with a wide range of organizations to develop interactive content and strategies to reach families and children, including National Geographic, PBS, Savvas Education, National Wildlife Foundation, and the National Children's Museum.

digits Grade 6 Contents

UNIT A Expressions and Equations

Topic 1 Variables and Expressions

Readiness Lesson 1 Rating Music Artists
Lesson 1-1 Numerical Expressions
Lesson 1-2 Algebraic Expressions
Lesson 1-3 Writing Algebraic Expressions
Lesson 1-4 Evaluating Algebraic Expressions
Lesson 1-5 Expressions with Exponents
Lesson 1-6 Problem Solving
Topic 1 Review
Topic 1 Assessment

Topic 2 Equivalent Expressions

Readiness Lesson 2 Renting Movies
Lesson 2-1 The Identity and Zero Properties
Lesson 2-2 The Commutative Properties
Lesson 2-3 The Associative Properties
Lesson 2-4 Greatest Common Factor
Lesson 2-5 The Distributive Property
Lesson 2-6 Least Common Multiple
Lesson 2-7 Problem Solving
Topic 2 Review
Topic 2 Assessment
Topic 3 Equations and Inequalities
Readiness Lesson 3 Video Game Economics
Lesson 3-1 Expressions to Equations
Lesson 3-2 Balancing Equations
Lesson 3-3 Solving Addition and Subtraction Equations
Lesson 3-4 Solving Multiplication and Division Equations
Lesson 3-5 Equations to Inequalities
Lesson 3-6 Solving Inequalities
Lesson 3-7 Problem Solving
Topic 3 Review
Topic 3 Assessment
Topic 4 Two-Variable Relationships
Readiness Lesson 4 Working at an Amusement Park
Lesson 4-1 Using Two Variables to Represent a Relationship
Lesson 4-2 Analyzing Patterns Using Tables and Graphs
Lesson 4-3 Relating Tables and Graphs to Equations
Lesson 4-4 Problem Solving
Topic 4 Review
Topic 4 Assessment

UNIT B Number System, Part 1

Topic 5 Multiplying Fractions

Readiness Lesson 5 Math in Music
Lesson 5-1 Multiplying Fractions and Whole Numbers
Lesson 5-2 Multiplying Two Fractions
Lesson 5-3 Multiplying Fractions and Mixed Numbers
Lesson 5-4 Multiplying Mixed Numbers
Lesson 5-5 Problem Solving
Topic 5 Review
Topic 5 Assessment

Topic 6 Dividing Fractions

Readiness Lesson 6 Making Pizzas
Lesson 6-1 Dividing Fractions and Whole Numbers
Lesson 6-2 Dividing Unit Fractions by Unit Fractions
Lesson 6-3 Dividing Fractions by Fractions
Lesson 6-4 Dividing Mixed Numbers
Lesson 6-5 Problem Solving
Topic 5 Review
Topic 5 Assessment

UNIT C Number System, Part 2

Topic 7 Fluency with Decimals

Readiness Lesson 7 Fast Food Nutrition
Lesson 7-1 Adding and Subtracting Decimals
Lesson 7-2 Multiplying Decimals
Lesson 7-3 Dividing Multi-Digit Numbers
Lesson 7-4 Dividing Decimals
Lesson 7-5 Decimals and Fractions
Lesson 7-6 Comparing and Ordering Decimals and Fractions
Lesson 7-7 Problem Solving
Topic 5 Review
Topic 5 Assessment

Topic 8 Integers

Readiness Lesson 8 Comparing the Planets
Lesson 8-1 Integers and the Number Line
Lesson 8-2 Comparing and Ordering Integers
Lesson 8-3 Absolute Value
Lesson 8-4 Integers and the Coordinate Plane
Lesson 8-5 Distance
Lesson 8-6 Problem Solving
Topic 5 Review
Topic 5 Assessment

Topic 9 Rational Numbers

Readiness Lesson 9 Baseball Stats
Lesson 9-1 Rational Numbers and the Number Line
Lesson 9-2 Comparing Rational Numbers
Lesson 9-3 Ordering Rational Numbers
Lesson 9-4 Rational Numbers and the Coordinate Plane
Lesson 9-5 Polygons in the Coordinate Plane
Lesson 9-6 Problem Solving
Topic 9 Review
Topic 9 Assessment

UNIT D Ratios and Proportional Relationships

Topic 10 Ratios

Readiness Lesson 10 Working with Playlists
Lesson 10-1 Ratios
Lesson 10-2 Exploring Equivalent Ratios
Lesson 10-3 Equivalent Ratios
Lesson 10-4 Ratios as Fractions
Lesson 10-5 Ratios as Decimals
Lesson 10-6 Problem Solving
Topic 10 Review
Topic 10 Assessment

Topic 11 Rates

Readiness Lesson 11 School Fundraisers
Lesson 11-1 Unit Rates
Lesson 11-2 Unit Prices
Lesson 11-3 Constant Speed
Lesson 11-4 Measurements and Ratios
Lesson 11-5 Choosing the Appropriate Rate
Lesson 11-6 Problem Solving
Topic 11 Review
Topic 11 Assessment

Topic 12 Ratio Reasoning

Readiness Lesson 12 Recycling
Lesson 12-1 Plotting Ratios and Rates
Lesson 12-2 Recognizing Proportionality
Lesson 12-3 Introducing Percents
Lesson 12-4 Using Percents
Lesson 12-5 Problem Solving
Topic 12 Review
Topic 12 Assessment

UNIT E Geometry

Topic 13 Area

Readiness Lesson 13 Designing a Playground
Lesson 13-1 Rectangles and Squares
Lesson 13-2 Right Triangles
Lesson 13-3 Parallelograms
Lesson 13-4 Other Triangles
Lesson 13-5 Polygons
Lesson 13-6 Problem Solving
Topic 13 Review
Topic 13 Assessment
Topic 14 Surface Area and Volume
Readiness Lesson 14 Planning a Birthday Party
Lesson 14-1 Analyzing Three-Dimensional Figures
Lesson 14-2 Nets
Lesson 14-3 Surface Areas of Prisms
Lesson 14-4 Surface Areas of Pyramids
Lesson 14-5 Volumes of Rectangular Prisms
Lesson 14-6 Problem Solving
Topic 14 Review
Topic 14 Assessment

UNIT F Statistics

Topic 15 Data Displays

Readiness Lesson 15 Organizing a Book Fair
Lesson 15-1 Statistical Questions
Lesson 15-2 Dot Plots
Lesson 15-3 Histograms
Lesson 15-4 Box Plots
Lesson 15-5 Choosing an Appropriate Display
Lesson 15-6 Problem Solving
Topic 15 Review
Topic 15 Assessment
Topic 16 Measures of Center and Variation
Readiness Lesson 16 Planning a Camping Trip
Lesson 16-1 Median
Lesson 16-2 Mean
Lesson 16-3 Variability
Lesson 16-4 Interquartile Range
Lesson 16-5 Mean Absolute Deviation
Lesson 16-6 Problem Solving
Topic 16 Review
Topic 16 Assessment

digits Grade 7 Contents

UNIT A Ratio and Proportional Relationships

Topic 1 Ratios and Rates

Readiness Lesson 1 Planning a Concert
Lesson 1-1 Equivalent Ratios
Lesson 1-2 Unit Rates
Lesson 1-3 Ratios With Fractions
Lesson 1-4 Unit Rates With Fractions
Lesson 1-5 Problem Solving
Topic 1 Review
Topic 1 Assessment

Topic 2 Proportional Relationships

Readiness Lesson 2 Making and Editing a Video
Lesson 2-1 Proportional Relationships and Tables
Lesson 2-2 Proportional Relationships and Graphs
Lesson 2-3 Constant of Proportionality
Lesson 2-4 Proportional Relationships and Equations
Lesson 2-5 Maps and Scale Drawings
Lesson 2-6 Problem Solving
Topic 2 Review
Topic 2 Assessment

Topic 3 Percents

Readiness Lesson 3 Restaurant Math
Lesson 3-1 The Percent Equation
Lesson 3-2 Using the Percent Equation
Lesson 3-3 Simple Interest
Lesson 3-4 Compound Interest
Lesson 3-5 Percent Increase and Decrease
Lesson 3-6 Markups and Markdowns
Lesson 3-7 Problem Solving
Topic 3 Review
Topic 3 Assessment

UNIT B Rational Numbers

Topic 4 Adding and Subtracting Rational Numbers
Readiness Lesson 4 Scuba Diving
Lesson 4-1 Rational Numbers, Opposites, and Absolute Value
Lesson 4-2 Adding Integers
Lesson 4-3 Adding Rational Numbers
Lesson 4-4 Subtracting Integers
Lesson 4-5 Subtracting Rational Numbers
Lesson 4-6 Distance on a Number Line
Lesson 4-7 Problem Solving
Topic 4 Review
Topic 4 Assessment

Topic 5 Multiplying and Dividing Rational Numbers

Readiness Lesson 5 Running a Bakery
Lesson 5-1 Multiplying Integers
Lesson 5-2 Multiplying Rational Numbers
Lesson 5-3 Dividing Integers
Lesson 5-4 Dividing Rational Numbers
Lesson 5-5 Operations With Rational Numbers
Lesson 5-6 Problem Solving
Topic 5 Review
Topic 5 Assessment

Topic 6 Decimals and Percents

Readiness Lesson 6 Summer Olympics
Lesson 6-1 Repeating Decimals
Lesson 6-2 Terminating Decimals
Lesson 6-3 Percents Greater Than 100
Lesson 6-4 Percents Less Than 1
Lesson 6-5 Fractions, Decimals, and Percents
Lesson 6-6 Percent Error
Lesson 6-7 Problem Solving
Topic 6 Review
Topic 6 Assessment

UNIT C Expressions and Equations

Topic 7 Equivalent Expressions

Readiness Lesson 7 Choosing a Cell Phone Plan
Lesson 7-1 Expanding Algebraic Expressions
Lesson 7-2 Factoring Algebraic Expressions
Lesson 7-3 Adding Algebraic Expressions
Lesson 7-4 Subtracting Algebraic Expressions
Lesson 7-5 Problem Solving
Topic 7 Review
Topic 7 Assessment

Topic 8 Equations

Readiness Lesson 8 Gym Workouts
Lesson 8-1 Solving Simple Equations
Lesson 8-2 Writing Two-Step Equations
Lesson 8-3 Solving Two-Step Equations
Lesson 8-4 Solving Equations Using the Distributive Property
Lesson 8-5 Problem Solving
Topic 8 Review
Topic 8 Assessment
Topic 9 Inequalities
Readiness Lesson 9 Taking Public Transportation
Lesson 9-1 Solving Inequalities Using Addition or Subtraction
Lesson 9-2 Solving Inequalities Using Multiplication or Division

Topic 9 continued

Lesson 9-3 Solving Two-Step Inequalities
Lesson 9-4 Solving Multi-Step Inequalities
Lesson 9-5 Problem Solving
Topic 9 Review
Topic 9 Assessment

UNIT D Geometry

Topic 10 Angles
Readiness Lesson 10 Miniature Golf
Lesson 10-1 Measuring Angles
Lesson 10-2 Adjacent Angles
Lesson 10-3 Complementary Angles
Lesson 10-4 Supplementary Angles
Lesson 10-5 Vertical Angles
Lesson 10-6 Problem Solving
Topic 10 Review
Topic 10 Assessment

Topic 11 Circles

Readiness Lesson 11 Planning Zoo Habitats
Lesson 11-1 Center, Radius, and Diameter
Lesson 11-2 Circumference of a Circle
Lesson 11-3 Area of a Circle
Lesson 11-4 Relating Circumference and Area of a Circle
Lesson 11-5 Problem Solving
Topic 11 Review
Topic 11 Assessment
Topic 12 2- and 3-Dimensional Shapes
Readiness Lesson 12 Architecture
Lesson 12-1 Geometry Drawing Tools
Lesson 12-2 Drawing Triangles with Given Conditions 1
Lesson 12-3 Drawing Triangles with Given Conditions 2
Lesson 12-4 2-D Slices of Right Rectangular Prisms
Lesson 12-5 2-D Slices of Right Rectangular Pyramids
Lesson 12-6 Problem Solving
Topic 12 Review
Topic 12 Assessment

Topic 13 Surface Area and Volume

Readiness Lesson 13 Growing a Garden
Lesson 13-1 Surface Areas of Right Prisms
Lesson 13-2 Volumes of Right Prisms
Lesson 13-3 Surface Areas of Right Pyramids
Lesson 13-4 Volumes of Right Pyramids
Lesson 13-5 Problem Solving
Topic 13 Review
Topic 13 Assessment

UNIT E Statistics

Topic 14 Sampling

Readiness Lesson 14 Endangered Species
Lesson 14-1 Populations and Samples
Lesson 14-2 Estimating a Population
Lesson 14-3 Convenience Sampling
Lesson 14-4 Systematic Sampling
Lesson 14-5 Simple Random Sampling
Lesson 14-6 Comparing Sampling Methods
Lesson 14-7 Problem Solving
Topic 14 Review
Topic 14 Assessment
Topic 15 Comparing Two Populations
Readiness Lesson 15 Tornadoes
Lesson 15-1 Statistical Measures
Lesson 15-2 Multiple Populations and Inferences
Lesson 15-3 Using Measures of Center
Lesson 15-4 Using Measures of Variability
Lesson 15-5 Exploring Overlap in Data Sets
Lesson 15-6 Problem Solving
Topic 15 Review
Topic 15 Assessment

UNIT F Probability

Topic 16 Probability Concepts

Readiness Lesson 16 Basketball Stats
Lesson 16-1 Likelihood and Probability
Lesson 16-2 Sample Space
Lesson 16-3 Relative Frequency and Experimental Probability
Lesson 16-4 Theoretical Probability
Lesson 16-5 Probability Models
Lesson 16-6 Problem Solving
Topic 16 Review
Topic 16 Assessment

Topic 17 Compound Events

Readiness Lesson 17 Games and Probability
Lesson 17-1 Compound Events
Lesson 17-2 Sample Spaces
Lesson 17-3 Counting Outcomes
Lesson 17-4 Finding Theoretical Probabilities
Lesson 17-5 Simulation With Random Numbers
Lesson 17-6 Finding Probabilities by Simulation
Lesson 17-7 Problem Solving
Topic 17 Review
Topic 17 Assessment

digits Grade 8 Contents

UNIT A The Number System

Topic 1 Rational and Irrational Numbers

Readiness Lesson 1 Skyscrapers
Lesson 1-1 Expressing Rational Numbers with Decimal Expansions
Lesson 1-2 Exploring Irrational Numbers
Lesson 1-3 Approximating Irrational Numbers
Lesson 1-4 Comparing and Ordering Rational and Irrational Numbers
Lesson 1-5 Problem Solving
Topic 1 Review
Topic 1 Assessment

UNIT B Expressions and

 Equations, Part 1
Topic 2 Linear Equations in One Variable

Readiness Lesson 2 Auto Racing
Lesson 2-1 Solving Two-Step Equations
Lesson 2-2 Solving Equations with Variables on Both Sides
Lesson 2-3 Solving Equations Using the Distributive Property
Lesson 2-4 Solutions - One, None, or Infinitely Many Lesson 2-5 Problem Solving
Topic 2 Review
Topic 2 Assessment

Topic 3 Integer Exponents

Readiness Lesson 3 Ocean Waves
Lesson 3-1 Perfect Squares, Square Roots, and Equations of the form $x^{2}=p$
Lesson 3-2 Perfect Cubes, Cube Roots, and Equations of the form $x^{3}=p$
Lesson 3-3 Exponents and Multiplication
Lesson 3-4 Exponents and Division
Lesson 3-5 Zero and Negative Exponents
Lesson 3-6 Comparing Expressions with Exponents
Lesson 3-7 Problem Solving
Topic 3 Review
Topic 3 Assessment

Topic 4 Scientific Notation

Readiness Lesson 4 The Mathematics of Sound
Lesson 4-1 Exploring Scientific Notation
Lesson 4-2 Using Scientific Notation to Describe Very Large Quantities
Lesson 4-3 Using Scientific Notation to Describe Very Small Quantities
Lesson 4-4 Operating with Numbers Expressed in Scientific Notation
Lesson 4-5 Problem Solving
Topic 4 Review
Topic 4 Assessment

- UNIT C Expressions and Equations, Part 2

Topic 5 Proportional Relationships, Lines, and Linear Equations

Readiness Lesson 5 High-Speed Trains
Lesson 5-1 Graphing Proportional Relationships
Lesson 5-2 Linear Equations: $y=m x$
Lesson 5-3 The Slope of a Line
Lesson 5-4 Unit Rates and Slope
Lesson 5-5 The y-intercept of a Line
Lesson 5-6 Linear Equations: $y=m x+b$
Lesson 5-7 Problem Solving
Topic 5 Review
Topic 5 Assessment
Topic 6 Systems of Two Linear Equations
Readiness Lesson 6 Owning a Pet
Lesson 6-1 What is a System of Linear Equations in Two Variables?
Lesson 6-2 Estimating Solutions of Linear Systems by Inspection
Lesson 6-3 Solving Systems of Linear Equations by Graphing
Lesson 6-4 Solving Systems of Linear Equations Using Substitution
Lesson 6-5 Solving Systems of Linear Equations Using Addition
Lesson 6-6 Solving Systems of Linear Equations Using Subtraction
Lesson 6-7 Problem Solving
Topic 6 Review
Topic 6 Assessment

UNIT D Functions

Topic 7 Defining and Comparing Functions

Readiness Lesson 7 Skydiving
Lesson 7-1 Recognizing a Function
Lesson 7-2 Representing a Function
Lesson 7-3 Linear Functions
Lesson 7-4 Nonlinear Functions
Lesson 7-5 Increasing and Decreasing Intervals
Lesson 7-6 Sketching a Function Graph
Lesson 7-7 Problem Solving
Topic 7 Review
Topic 7 Assessment

Topic 8 Linear Functions

Readiness Lesson 8 Snowboarding Competitions
Lesson 8-1 Defining a Linear Function Rule
Lesson 8-2 Rate of Change
Lesson 8-3 Initial Value
Lesson 8-4 Comparing Two Linear Functions
Lesson 8-5 Constructing a Function to Model a Linear Relationship
Lesson 8-6 Problem Solving
Topic 8 Review
Topic 8 Assessment

UNIT E Geometry
Topic 9 Congruence
Readiness Lesson 9 Computer-Aided Design
Lesson 9-1 Translations
Lesson 9-2 Reflections
Lesson 9-3 Rotations
Lesson 9-4 Congruent Figures
Lesson 9-5 Problem Solving
Topic 9 Review
Topic 9 Assessment

Topic 10 Similarity

Readiness Lesson 10 Air Travel
Lesson 10-1 Dilations
Lesson 10-2 Similar Figures
Lesson 10-3 Relating Similar Triangles and Slope
Lesson 10-4 Problem Solving
Topic 10 Review
Topic 10 Assessment
Topic 11 Reasoning in Geometry
Readiness Lesson 11 Photography
Lesson 11-1 Angles, Lines, and Transversals
Lesson 11-2 Reasoning and Parallel Lines
Lesson 11-3 Interior Angles of Triangles
Lesson 11-4 Exterior Angles of Triangles
Lesson 11-5 Angle-Angle Triangle Similarity
Lesson 11-6 Problem Solving
Topic 11 Review
Topic 11 Assessment

Topic 12 Using The Pythagorean Theorem
Readiness Lesson 12 Designing a Billboard
Lesson 12-1 Reasoning and Proof
Lesson 12-2 The Pythagorean Theorem
Lesson 12-3 Finding Unknown Leg Lengths
Lesson 12-4 The Converse of the Pythagorean Theorem
Lesson 12-5 Distance in the Coordinate Plane
Lesson 12-6 Problem Solving
Topic 12 Review
Topic 12 Assessment
Topic 13 Surface Area and Volume
Readiness Lesson 13 Sand Sculptures
Lesson 13-1 Surface Areas of Cylinders
Lesson 13-2 Volumes of Cylinders
Lesson 13-3 Surface Areas of Cones
Lesson 13-4 Volumes of Cones
Lesson 13-5 Surface Areas of Spheres
Lesson 13-6 Volumes of Spheres
Lesson 13-7 Problem Solving
Topic 13 Review
Topic 13 Assessment

UNIT F Statistics

Topic 14 Scatter Plots

Readiness Lesson 14 Marching Bands
Lesson 14-1 Interpreting a Scatter Plot
Lesson 14-2 Constructing a Scatter Plot
Lesson 14-3 Investigating Patterns - Clustering and Outliers
Lesson 14-4 Investigating Patterns - Association
Lesson 14-5 Linear Models - Fitting a Straight Line
Lesson 14-6 Using the Equation of a Linear Model
Lesson 14-7 Problem Solving
Topic 14 Review
Topic 14 Assessment
Topic 15 Analyzing Categorical Data
Readiness Lesson 15 Road Trip!
Lesson 15-1 Bivariate Categorical Data
Lesson 15-2 Constructing Two-Way Frequency Tables
Lesson 15-3 Interpreting Two-Way Frequency Tables
Lesson 15-4 Constructing Two-Way Relative Frequency Tables
Lesson 15-5 Interpreting Two-Way Relative Frequency Tables
Lesson 15-6 Choosing a Measure of Frequency
Lesson 15-7 Problem Solving
Topic 15 Review
Topic 15 Assessment

digits Accelerated Grade 7 Contents

UNIT I Rational Numbers and Exponents

Topic 1 Adding and Subtracting Rational Numbers
Lesson 1-1 Rational Numbers, Opposites, and Absolute Value
Lesson 1-2 Adding Integers
Lesson 1-3 Adding Rational Numbers
Lesson 1-4 Subtracting Integers
Lesson 1-5 Subtracting Rational Numbers
Lesson 1-6 Distance on a Number Line
Lesson 1-7 Problem Solving
Topic 1 Review
Topic 1 Assessment

Topic 2 Multiplying and Dividing Rational Numbers

Lesson 2-1 Multiplying Integers
Lesson 2-2 Multiplying Rational Numbers
Lesson 2-3 Dividing Integers
Lesson 2-4 Dividing Rational Numbers
Lesson 2-5 Operations With Rational Numbers
Lesson 2-6 Problem Solving
Topic 2 Review
Topic 2 Assessment
Topic 3 Decimals and Percent
Lesson 3-1 Repeating Decimals
Lesson 3-2 Terminating Decimals
Lesson 3-3 Percents Greater Than 100
Lesson 3-4 Percents Less Than 1
Lesson 3-5 Fractions, Decimals, and Percents
Lesson 3-6 Percent Error
Lesson 3-7 Problem Solving
Topic 3 Review
Topic 3 Assessment

Topic 4 Rational and Irrational Numbers

Lesson 4-1 Expressing Rational Numbers with Decimal Expansions
Lesson 4-2 Exploring Irrational Numbers
Lesson 4-3 Approximating Irrational Numbers
Lesson 4-4 Comparing and Ordering Rational and Irrational Numbers
Lesson 4-5 Problem Solving
Topic 4 Review
Topic 4 Assessment

Topic 5 Integer Exponents

Lesson 5-1 Perfect Squares, Square Roots, and Equations of the form $x^{2}=p$
Lesson 5-2 Perfect Cubes, Cube Roots, and Equations of the form $x^{3}=p$
Lesson 5-3 Exponents and Multiplication
Lesson 5-4 Exponents and Division
Lesson 5-5 Zero and Negative Exponents
Lesson 5-6 Comparing Expressions with Exponents
Lesson 5-7 Problem Solving
Topic 5 Review
Topic 5 Assessment
Topic 6 Scientific Notation
Lesson 6-1 Exploring Scientific Notation
Lesson 6-2 Using Scientific Notation to Describe Very Large Quantities
Lesson 6-3 Using Scientific Notation to Describe Very Small Quantities
Lesson 6-4 Operating with Numbers Expressed in Scientific Notation
Lesson 6-5 Problem Solving
Topic 6 Review
Topic 6 Assessment

UNIT II Proportionality and Linear Relationships

Topic 7 Ratios and Rates

Lesson 7-1 Equivalent Ratios
Lesson 7-2 Unit Rates
Lesson 7-3 Ratios With Fractions
Lesson 7-4 Unit Rates With Fractions
Lesson 7-5 Problem Solving
Topic 7 Review
Topic 7 Assessment

Topic 8 Proportional Relationships

Lesson 8-1 Proportional Relationships and Tables
Lesson 8-2 Proportional Relationships and Graphs
Lesson 8-3 Constant of Proportionality
Lesson 8-4 Proportional Relationships and Equations
Lesson 8-5 Maps and Scale Drawings
Lesson 8-6 Problem Solving
Topic 8 Review
Topic 8 Assessment

Topic 9 Percents

Lesson 9-1 The Percent Equation
Lesson 9-2 Using the Percent Equation
Lesson 9-3 Simple Interest
Lesson 9-4 Compound Interest
Lesson 9-5 Percent Increase and Decrease
Lesson 9-6 Markups and Markdowns
Lesson 9-7 Problem Solving
Topic 9 Review
Topic 9 Assessment

Topic 10 Equivalent Expressions

Lesson 10-1 Expanding Algebraic Expressions
Lesson 10-2 Factoring Algebraic Expressions
Lesson 10-3 Adding Algebraic Expressions
Lesson 10-4 Subtracting Algebraic Expressions
Lesson 10-5 Problem Solving
Topic 10 Review
Topic 10 Assessment

Topic 11 Equations

Lesson 11-1 Solving Simple Equations
Lesson 11-2 Writing Two-Step Equations
Lesson 11-3 Solving Two-Step Equations
Lesson 11-4 Solving Equations Using the Distributive Property
Lesson 11-5 Problem Solving
Topic 11 Review
Topic 11 Assessment

Topic 12 Linear Equations in One Variable

Lesson 12-1 Solving Two-Step Equations
Lesson 12-2 Solving Equations with Variables on Both Sides

Lesson 12-3 Solving Equations Using the Distributive Property
Lesson 12-4 Solutions - One, None, or Infinitely Many
Lesson 12-5 Problem Solving
Topic 12 Review
Topic 12 Assessment

Topic 13 Inequalities

Lesson 13-1 Solving Inequalities Using Addition or Subtraction
Lesson 13-2 Solving Inequalities Using Multiplication or Division
Lesson 13-3 Solving Two-Step Inequalities
Lesson 13-4 Solving Multi-Step Inequalities
Lesson 13-5 Problem Solving
Topic 13 Review
Topic 13 Assessment

Topic 14 Proportional Relationships, Lines, and Linear Equations

Lesson 14-1 Graphing Proportional Relationships
Lesson 14-2 Linear Equations: $y=m x$
Lesson 14-3 The Slope of a Line
Lesson 14-4 Unit Rates and Slope
Lesson 14-5 The y-intercept of a Line
Lesson 14-6 Linear Equations: $y=m x+b$
Lesson 14-7 Problem Solving
Topic 14 Review
Topic 14 Assessment

digits Accelerated Grade 7 Contents continued

UNIT III Introduction to Sampling and Inference

Topic 15 Sampling

Lesson 15-1 Populations and Samples
Lesson 15-2 Estimating a Population
Lesson 15-3 Convenience Sampling
Lesson 15-4 Systematic Sampling
Lesson 15-5 Simple Random Sampling
Lesson 15-6 Comparing Sampling Methods
Lesson 15-7 Problem Solving
Topic 15 Review
Topic 15 Assessment
Topic 16 Comparing Two Populations
Lesson 16-1 Statistical Measures
Lesson 16-2 Multiple Populations and Inferences
Lesson 16-3 Using Measures of Center
Lesson 16-4 Using Measures of Variability
Lesson 16-5 Exploring Overlap in Data Sets
Lesson 16-6 Problem Solving
Topic 16 Review
Topic 16 Assessment
Topic 17 Probability Concepts
Lesson 17-1 Likelihood and Probability
Lesson 17-2 Sample Space
Lesson 17-3 Relative Frequency and Experimental Probability
Lesson 17-4 Theoretical Probability
Lesson 17-5 Probability Models
Lesson 17-6 Problem Solving
Topic 17 Review
Topic 17 Assessment
Topic 18 Compound Events
Lesson 18-1 Compound Events
Lesson 18-2 Sample Spaces
Lesson 18-3 Counting Outcomes
Lesson 18-4 Finding Theoretical Probabilities
Lesson 18-5 Simulation With Random Numbers
Lesson 18-6 Finding Probabilities by Simulation
Lesson 18-7 Problem Solving
Topic 18 Review
Topic 18 Assessment

UNIT IV Creating, Comparing, and Analyzing Geometric Figures

Topic 19 Angles

Lesson 19-1 Measuring Angles
Lesson 19-2 Adjacent Angles
Lesson 19-3 Complementary Angles
Lesson 19-4 Supplementary Angles
Lesson 19-5 Vertical Angles
Lesson 19-6 Problem Solving

Topic 19 Review

Topic 19 Assessment

Topic 20 Circles

Lesson 20-1 Center, Radius, and Diameter
Lesson 20-2 Circumference of a Circle
Lesson 20-3 Area of a Circle
Lesson 20-4 Relating Circumference and Area of a Circle
Lesson 20-5 Problem Solving
Topic 20 Review
Topic 20 Assessment
Topic 21 2- and 3-Dimensional Shapes
Lesson 21-1 Geometry Drawing Tools
Lesson 21-2 Drawing Triangles with Given Conditions 1
Lesson 21-3 Drawing Triangles with Given Conditions 2
Lesson 21-4 2-D Slices of Right Rectangular Prisms
Lesson 21-5 2-D Slices of Right Rectangular Pyramids
Lesson 21-6 Problem Solving
Topic 21 Review
Topic 21 Assessment

Topic 22 Surface Area and Volume

Lesson 22-1 Surface Areas of Right Prisms
Lesson 22-2 Volumes of Right Prisms
Lesson 22-3 Surface Areas of Right Pyramids
Lesson 22-4 Volumes of Right Pyramids
Lesson 22-5 Problem Solving
Topic 22 Review
Topic 22 Assessment

Topic 23 Congruence

Lesson 23-1 Translations
Lesson 23-2 Reflections
Lesson 23-3 Rotations
Lesson 23-4 Congruent Figures
Lesson 23-5 Problem Solving
Topic 23 Review
Topic 23 Assessment

Topic 24 Similarity

Lesson 24-1 Dilations
Lesson 24-2 Similar Figures
Lesson 24-3 Relating Similar Triangles and Slope
Lesson 24-4 Problem Solving
Topic 24 Review
Topic 24 Assessment

Topic 25 Reasoning in Geometry

Lesson 25-1 Angles, Lines, and Transversals
Lesson 25-2 Reasoning and Parallel Lines
Lesson 25-3 Interior Angles of Triangles
Lesson 25-4 Exterior Angles of Triangles
Lesson 25-5 Angle-Angle Triangle Similarity
Lesson 25-6 Problem Solving
Topic 25 Review
Topic 25 Assessment
Topic 26 Surface Area and Volume
Lesson 26-1 Surface Areas of Cylinders
Lesson 26-2 Volumes of Cylinders
Lesson 26-3 Surface Areas of Cones
Lesson 26-4 Volumes of Cones
Lesson 26-5 Surface Areas of Spheres
Lesson 26-6 Volumes of Spheres
Lesson 26-7 Problem Solving
Topic 26 Review
Topic 26 Assessment

Overview

The Role of Classroom Technology

Today is both an exciting and chaotic time. As never before, teachers can choose from many new classroom technologies to engage and motivate students.

Pearson's new comprehensive and coherent middle grades math program digits offers integrated instructional content designed both to optimize teachers' and students' time and to personalize learning. Created with the teacher in mind, the program simplifies typically laborious tasks and enables teachers to focus on teaching and interacting with students.

The digits program helps teachers leverage the classroom technology that they have, whether that includes a projector, an interactive whiteboard, student response systems, or devices that support one-to-one computing. More important, the program can grow with classrooms as technology is introduced. To use digits, a classroom needs only a computer and a projector.

Research and Policy

The development of digits has been driven by the Common Core State Standards for Mathematics (CCSSM), Understanding by Design®, and foundational research in instruction, data-driven intervention, and motivation. Each driver has provided fundamental, unique, and interlinking contributions to the program.

The CCSSM have identified the instructional goals and the achievement expectations of students at each grade level. They do not necessarily outline how to achieve those goals, but rather establish a common framework to prepare students and gauge success. Prior to the initiative, state standards varied widely and curriculum conversations often did not cross state lines, as if each state had its own "language" when talking about and making decisions about math instruction. With the CCSSM, states are beginning to use one language and gain an ability to achieve long-term goals across many states.

The Understanding by Design® principles, on the other hand, have provided guidance on how to structure units and lessons in digits to achieve the content and practice goals of the Common Core State Standards. With a research-based approach for curriculum planning, Understanding by Design® focuses on achieving the desired learning outcomes with coherence, and provides specific guidance on how to "unpack" the various layers in a standard.

While the Common Core State Standards identifies what students need to know and develop and the Understanding by Design $®$ framework provides guidance on how to structure the lessons to achieve the instructional goals, foundational research in instruction, data-driven intervention, and motivation provides the inspiration for the actual learning activities. The convergence of these three factors has resulted in the ground breaking and unique approach in digits that is not only instructionally effective but also fun to teach!

Common Core State Standards

> ! The Common Core State Standards provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. The standards are designed to be robust and relevant to the real world, reflecting the knowledge and skills that our young people need for success in college and careers. With American students fully prepared for the future, our communities will be best positioned to compete successfully in the global economy.

The Common Core State Standards were developed through a state-led effort coordinated by the National Governors Association Center for Best Practices and the Council of Chief State School Officers. The standards were informed and influenced by state standards, teachers, school administrators, content experts, international models, and the general public.

Generally, the CCSSM define the knowledge and skills students should have in order to be successful in college and in workforce training programs. For middle grades, the standards prepare students well for an Algebra 1 course in Grade 9. Further, students who have completed Grade 7 and mastered the content, skills, and understandings of the CCSSM through Grade 7 are prepared for an algebra course in Grade 8.

The standards stress not only procedural skill but also conceptual understanding. Combined, these emphases ensure that students are prepared for higher level mathematics in high school.

Each grade has a specific set of focused and coherent standards organized in clusters and domains.

Focus Areas of the Grade 6 CCSSM

- connecting ratio and rate to whole number multiplication and division and using concepts of ratio and rate to solve problems
- completing understanding of division of fraction and extending the notion of number to the system of rational numbers, including negative numbers
- writing, interpreting, and using expressions and equations
- developing understanding of statistical thinking

Focus Areas of the Grade 7 CCSSM

- developing understanding of and applying proportional relationships
- developing understanding of operations with rational numbers and working with expressions and linear equations
- solving problems involving scale drawings and informal geometric constructions, and working with two- and three-dimensional shapes to solve problems involving area, surface area, and volume
- drawing inferences about populations based on samples

Focus Areas of the Grade 8 CCSSM

- formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations
- grasping the concept of a function and using functions to describe quantitative relationships
- analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem

In addition to Standards for Mathematical Content, the Common Core State Standards include Standards for Mathematical Practice, which describe habits that enable the development of deep mathematical understanding and expertise.

The Common Core Standards for Mathematical Practice focus on the processes and proficiencies that all mathematics educators should seek to develop in their students. The eight standards were informed by the National Council of Teachers of Mathematics Process Standards (2000) and the strands of mathematical proficiency outlined in Adding It Up by the National Research Council (2001).

References for Common Core State Standards

"Common Core State Standards Initiative | About The Standards." Common Core State Standards Initiative |Home. Web 06 Apr. 2011. http://www.corestandards.org/.

National Council of Teachers of Mathematics, (2000). Principles and Standards for School Mathematics. Reston, VA: NCTM.

National Research Council. (2001). Adding It Up: Helping Children Learn Mathematics (J. Kilpatrick, J. Swafford, \& B. Findell, Eds.) Washington, DC: National Academy Press.

Understanding by Design® Principles

Understanding by Design® is a curriculum-planning framework that focuses on helping students understand important ideas in a meaningful way. The researchbased approach of Understanding by Design® aims to have students demonstrate understanding through sense making and transfer of learning through authentic performance.

The Understanding by Design® framework involves a three-stage "backward-design" process that uses the desired learning outcomes and the evidence that learning has occurred as the main drivers. During Stage 1, the desired results are identified, which include the targeted goals, the essential questions that students should consider, and the knowledge and skills that the students will need. In Stage 2, developers and curriculum planners determine the acceptable evidence such as what performances and products students will need to demonstrate or create, as well as the acceptable assessment criteria. Lastly, in Stage 3, the learning experiences and instruction are planned accordingly.

References for Understanding by Design ${ }^{\circledR}$

Wiggins, G., \& McTighe, J. (1998). Understanding by Design. Alexandria, VA: Association for Supervision and Curriculum Development.

Wiggins, G., \& McTighe, J. (2011) The Understanding by Design Guide to Creating High-Quality Units. Alexandria, VA: Association for Supervision and Curriculum Development.

Foundational Research

The inspiration of digits was driven by three foundational pillars of research: Instruction, Data-Driven Intervention, and Motivation. Key elements of each of these pillars are described below.

Instruction

Research based on students who struggle with math indicates that successful programs include a balance of explicit instruction and guided explorations. Explicit instruction is most effective for presentation of factual content; guided explorations are most effective for content that is conceptual, procedural, or problem-based.

Positive results have been found by preparing students prior to a formal learning structure. This preparation involves introducing them to concepts through active learning.

A differentiated classroom provides multiple avenues for acquiring information and processing and making sense of ideas enabling each student to learn effectively.

Whole-class instruction is most feasible for middle grades teachers and allows for direct instruction of content followed by engaging discussions and sharing a variety of methods.

Small-group work enables students to provide mutual feedback and engage in debates that motivate students to abandon misconceptions and search for better solutions.

Peer-assisted learning allows students to quickly compare and correct understandings by working with classmates who may have insight into areas of struggle.

Research clearly emphasizes that for learning to occur, new information must be integrated with what the learner already knows. By activating prior knowledge before an assessment, students can draw on what they already know for a more accurate assessment picture.

Online tools provide significant functionality in transmitting information to the student, providing forums for exchange, increased opportunities for learning, and alternative formats for information gathering. This type of environment permits the instructor to build one course while implementing a variety of resources to best meet student needs.

Data-Driven Intervention

Diagnostic tests yield strengths and weaknesses about students' mathematics learning and provide information for teachers to plan appropriate instruction and to group students.

Research indicates that formative assessment

 followed by feedback during learning activities is the most effective instructional strategy. In fact, consistent and ongoing formative assessment has been found to increase learning effectiveness by as much as seventy-five percent.Research recommends that a strong technology infrastructure can make formative assessment feasible by enabling students to take assessments online and providing immediate feedback to both the student and the teacher.

Motivation

Findings from the National Math Panel report together with Savvas-sponsored research suggest that one of teachers' greatest challenges in helping students succeed in mathematics is working with unmotivated students.

The transition for children from elementary school to middle school is most often a challenging one, and this has a negative impact on motivation in academic classes.

Developmental changes in students' intrinsic motivation are generally accompanied by declining confidence and by increasing anxiety.

Intrinsic motivation can be increased by

 challenging students, giving them some control, letting them use technology, and helping them meet success.Cognitive neuroscience research indicates that positive mood triggered by humor enhances insight and the ability to solve problems.

Differentiated assignments enable students to draw on their own readiness levels and learning modes, thereby drawing on students' interests and strengths. Students can grow from appropriate challenges while the teacher retains focus on the key content that is essential to all learners.

Students who work with a visual organizer are better able to follow the flow of a lecture. This type of tool can help students focus on key ideas and information.

Educational research shows that if information is conveyed to the students in a combination of text, color, graphics, animation, sound, moving pictures, and a degree of interactivity, the interactive multimedia approach may result in a significant increase in retention and improvement in the learning rate.

References for Foundational Research

Black, P., and Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy and Practice 5(1), 7-74.

Dwyer, D., Barbieri, K., \& Doerr, H. Creating a Virtual Classroom for Interactive Education on the Web. The Third International World Wide Web Conference. 1995.

Ehly, S. \& Topping, K. (Eds.). (1998). Peer-Assisted Learning. Mahwah, NJ: Lawrence Erlbaum Associates.

Gurganus, S.P. (2007). Math Instruction for Students with Learning Problems. Boston, MA: Savvas Allyn \& Bacon.

Kennelly, L. \& Monrad, M. (2007). Approaches to Dropout Prevention: Heeding Early Warning Signs with Appropriate Intervetions. Washington, DC: National High School Center at the American Institutes for Research.

Kramarski, B. \& Mevarech, Z. R. (2003). Enhancing Mathematical Reasoning in the Classroom: The Effects of Cooperative Learning and Megacognitive Training. American Educational Research Journal, 40(1), 291-310.

Meece, J.L., Pintrich, P.R., \& Schunk, D.H. (2008). Motivation in Education: Theory, Research, and Application. Upper Saddle River, NJ: Savvas Merrill Prentice Hall.

National Mathematics Advisory Panel. (2008). Foundations for Success: The Final Report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.

Rumelhart, D. E. (1980). "Schemata: The building blocks of cognition." In R. J. Spiro et al., (Eds.) Theoretical Issues in Reading Comprehension (pp. 33-58). Hillsdale, NJ: Erlbaum.

State Educational Technology Directors Association. (2008). Technology Based Assessments Improve Teaching and Learning. Glen Burnie: MD.

Subramaniam, K., Kounios, J., Parrish, T., \& Jung-Beeman, M. (2008). A Brain Mechanism for Facilitation of Insight by Positive Effect. Journal of Cognitive Neuroscience 21(3), 415-432.

Sullivan, Amy. (2008) Designing the Digital Classroom. Research Matters. Utah State University Research.

Tomlinson, C. (2001). How to Differentiate Instruction in Mixed-Ability Classrooms. Alexandria, VA: ASCD.
U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics.

Vahey, P., Yarnall, L., Patton, C., Zalles, D., \& Swan, K. (2006). Proceedings from American Educational Research Association: Mathematizing middle school: Results from a cross-disciplinary study of data literacy. San Francisco, CA.

Wang, G. Work in Progress - Preview, Exercise, Teaching and Learning in Digital Electronics Education. IEEE Frontiers in Education Conference. Purdue University, 2008.

Wiliam, D. (2007). Content then process: teacher learning communities in the service of formative assessment. In D. B. Reeves (Ed.), Ahead of the curve: the power of assessment to transform teaching and learning (pp. 183-204). Bloomington, IN: Solution Tree.

Wiliam, D. (2007b). Keeping learning on track: Formative assessment and the regulation of learning. In F.K. Lester, Jr. (Ed.), Second handbook of mathematics teaching and learning (pp. 1053-1098). Greenwich, CT: Information Age Publishing.
Wiliam. D., \& Leahy, S. (2007). A theoretical foundation for formative assessment. In J. H. McMillan (Ed.), Formative classroom assessment: Research, theory and practice. New York, NY: Teachers College Press.

Wiliam, D., \& Thompson, M. (2007). Integrating assessment with instruction: What will it take to make it work? In C.A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning. Mahwah, NJ: Lawrence Erlbaum Associates.

Developing digits

Taking digits from conception to reality has been an exciting process that involved teachers and students nationwide. Advances in technology enabled us to have greater transparency, engage with more educators than ever before, field test prototypes with hundreds of students, and respond agilely to student and teacher feedback.

Gathering Input

In addition to observing middle grades teachers nationwide to internalize their daily challenges and victories, we also invited teachers to Savvas IdeaShare, where they could express specific desires to be incorporated in a new middle grades math program. Teachers who joined Savvas IdeaShare could contribute ideas, read ideas from others, and vote on ideas in the categories of best practices and real world mathematical contexts. All ideas were carefully considered and over 90% of the ideas were incorporated into digits.

Iterative Field Testing

Early in the development process, we field tested Grade 6 and Grade 7 lessons with approximately 600 students in order to gain insight on implementation challenges, lesson flow, and degree of teacher fidelity. Adjustments were made following each field test cycle to respond to gathered feedback and observations. The following materials were included in the field tests:

- Readiness Assessment administered to students prior to instruction. A teacher report with recommended student differentiation groups for the Readiness Lesson was generated from the results of the assessment.
- Instruction on Ratios and Patterns and Functions, including the Readiness Lesson and on-level lessons (delivered online with back-up CD-ROM).
- Printed copies of teacher notes for each day's lesson.
- Student booklet containing the accompanying student companion pages.
- Student Dashboard and homework powered by Math XL for School.

Highlights from the iterative field tests that informed our thinking include:

- Overall program approach and key components were well received.
- In-class presentation was effective for presenting the instruction and keeping students engaged.
- Online homework with immediate feedback was motivating for students and time-saving for teachers.
- Online homework with supportive learning aids improved homework completion rates.
- Built-in differentiation informed by an objective assessment allowed teachers to spend more time with struggling students while providing on-level and advanced students authentic math experiences.
- Strong teacher materials helped support fidelity of implementation.

Evaluation

To increase teacher contribution, national teleconferences were conducted. In advance of the teleconferences, participants reviewed a self-guided presentation of the instructional model, the daily lesson routine, differentiation options, program components, and online homework. Participants were also able to interact with digital samples of the interactive whiteboard lessons as well as samples of pages from the student companion. Highlights from the teleconferences that informed our thinking include:

- Teachers believe mathematics education needs to integrate technology to keep up with the way students learn.
- Teachers praised the increased focus on differentiation and personalization found in digits.
- Teachers have heard promises of differentiation and time savings from other programs, but they believe this program would actually deliver on the promise.
- Teachers are concerned about technology reliability in schools and access at home. They found the available implementation options of digits helpful.
- Teachers want an ability to customize the materials to match their teaching style or to match class pacing needs. They found that digits provides this ability.

Ongoing evaluation includes a third party, multiple year, longitudinal efficacy study at sites nationwide beginning September 2011.
© Integrated technology
© Differentiation and personalization
(Flexible technology implementation options for school and home
(Readily customizable materials

Mathematics Content

Building to the Common Core State Standards

Building to the Common Core State Standards requires a synthesis of both the Standards for Mathematical Content and the Standards for Mathematical Practice. While the content standards identify the core knowledge and skills that students are expected to possess at each grade level, the Standards for Mathematical Practice identify the attributes of mathematical thinking that teachers of all grades need to reinforce.

Consequently, building to the Common Core State Standards is more than just an alignment to the content standards. The digits program has been built to incorporate the Standards for Mathematical Practice in the overall instructional design. Multiple opportunities are provided daily to engage students in the use of the Standards for Mathematical Practice.

Common Core Standards for Mathematical Practice

digits incorporates the Standards for Mathematical Practice into the overall instructional design and pedagogical approach. digits focuses on providing teachers and students opportunities to develop mathematical proficiency by modeling and honing their Mathematical Practice as they work through the various problems and examples in the program.

The following highlights the opportunities these materials create to make Mathematical Practice a reality for students. It explains how digits supports the development of mathematical proficiency in students, citing some examples of how each Standard for Mathematical Practice is embedded in the digits curriculum.

Common Core State Standards for Mathematical Practice

Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches.

Through dynamic instructional tools, students evaluate various solution pathways to promote sense-making and critical thinking. Many of the Examples are presented using the Drag and Drop feature of digits, which gives students feedback that confirms thinking or redirects when appropriate. This kind of feedback fosters independence and perseverance.

AOQ
Levian 6-6. Solveg symems of Uinear fquations Uving Subtracion

Example
4 Select the most efficient algebraic method to solve each system by inspecting the equations.

Additionally, learning aids in the Online Homework powered by MathXL provide support only when students want and need it so that students can develop into confident and independent problem-solvers.

Every lesson in digits engages students with the mathematical concept through problems designed to enable multiple entry points. Every lesson starts with a Launch, which provides students with an opportunity to make sense of problems and persevere in solving them.

Launch

Two friends agree to pay half each for their mostly excellent meatloaf dinner and most excellent 20% tip. Each friend has $\$ 8.50$.
Do they have enough money to complete their excellent plan? If so, by how much? If not, tell what they should do.

Flexible digital tools enable the teacher to model Mathematical Practices and draw comparisons across student solution methods. One feature, known as the "Know-Need-Plan" organizer, helps students analyze the givens in a problem and develop a workable solution plan.

Example

4. After-school practice is 90 minutes long. Some of that time is spent doing warm-ups and the rest is spent doing drills.

Write an equation to represent the situation.

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:
-What is the problem that you are solving for?

- How will you go about solving the problem? (that is, What's your plan?)
- Did you check your solution by using a different method?

Reason abstractly and quantitatively.

: Mathematically proficient students make sense of quantities and their : relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.

Problems in digits are presented in a blend of both concrete and abstract representations to support abilities to decontextualize and contextualize. As students work with a concrete representation, they discover efficiencies by abstracting the given situation into symbolic representation that supports pursuit of a solution strategy. Animations and other visuals facilitate understanding of the problem situations so students can connect to mathematical models more easily.

AOO Lesson 3-7: Problem Solving

Example

44) A model train runs on a looping track. It makes 7 loops around the track each hour. The train travels at least 28 meters each hour. Let t represent the length of each loop. Write an inequality to represent the situation. Then solve the inequality.

Conversely, abstract problems are also presented in digits which require dissection in order to understand the problem situation.

Key Concepts also make thoughtful use of technology including visual and auditory cues such as movement and colorcoding to assist students in the transfer between concrete and abstract. The dynamic visual and auditory presentation tangibly helps students develop their own mathematical thought processes.

The Do You UNDERSTAND? feature, found in the Student Companion, contains exercises that ask students to explain their thinking related to the concepts in the lesson. Many of the Reasoning exercises focus students' attention on the structure or meaning of an operation rather than the solution.

Do you UNDERSTAND?

4. Reasoning In the expression $\frac{a^{3}}{a^{3}}$, why can the variable not be equal to 0 ? Use substitution to justify your argument arithmetically.

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:

- Can you write or recall an expression or equation to match the problem situation?
- What do the numbers or variables in the equation refer to?
- What's the connection among the numbers and variables in the equation?

Construct viable arguments and critique the reasoning of others.

: Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
digits supports class discourse with interactive whiteboard lessons. Throughout digits students are asked to explain their solutions and the thinking that led them to these solutions. Students present solution strategies, defend them, and draw comparisons to other strategies by utilizing interactive presentation tools. Launch activities always ask students to justify their conclusions or explain their reasoning.

Error Analysis and Reasoning exercises ask students to argue for or against a statement.

An exercise might ask students to identify the error in logic, if it exists...
. . . or to use counterexamples to respond to arguments that are flawed. .
5. Error Analysis Your friend says that the angles below are not complementary because they are not adjacent. Is she correct? Explain.

7. Error Analysis A classmate writes the solution to $-10 r-2 r-2<22$. Use a counterexample to show that she is incorrect and explain her error.

$$
r<-2
$$

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:

- What does your answer mean?
- How do you know that your answer is correct?
- If I told you I think the answer should be [a wrong answer], how would you explain to me why I'm wrong?

Abstract

Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts, and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Because digits uses real-world mathematical contexts, students recognize the inherent nature of mathematics as a means for modeling our world. Mathematics is purposefully used to deepen our understanding of the problem situation and provide opportunities to predict or solve for alternate scenarios or changes to conditions. Students routinely evaluate their mathematical results against the context of the situation to promote sense making. The interactive nature of digits allows students to experiment on their own with mathematical models in different forms. Thus students see the interrelationships among multiple representations.

Launches provide students with opportunities to use mathematical models to solve real-world problems. Students can interpret their results in context of the situation and improve their model if it has not served its purpose.

$A D A$

 Letion 10-3: Equivilent Rasos
Launch

4i) The table shows votes for a new school team name. One friend says two grades woted the same. A second friend says the total vote for team name was the same.

Use ratios to show how both friends could be correct. Which team name should the school choose? Explain.

Focus Questions in digits ask students to reflect on when and how different types of models are helpful.

Focus Question

In this topic you have studied different ways to represent proportional relationships. In what ways can you represent proportional relationships? How can knowing how to represent proportional relationship in different ways be useful in solving problems?

The Student Companion contains Compare and Contrast exercises that ask students to reflect on the meaning of the numbers in a model. These types of exercises help students to see how one model could be interpreted in multiple correct ways.
4. Compare and Contrast Two friends analyze this equation. One friend says the volume of water increases $\frac{3}{4} \mathrm{ft}^{3}$ every minute. The other says the volume of water increases $3 \mathrm{ft}^{3}$ every 4 minutes. Which friend is correct? Explain.

$$
\begin{aligned}
& \qquad y=\frac{3}{4} x \\
& x=\text { minutes } \\
& y=\text { volume of water in cubic feet }
\end{aligned}
$$

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:

- What formula or relationship can you think of that fits this problem situation?
- What is the connection among the numbers in the problem?
- Is your answer reasonable? How do you know?
- What do the numbers in your solution refer to?

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts.

In digits, students work with a wide array of math tools when solving problems. From simple pencil and paper in the Student Companion to digital tools on the interactive whiteboard or computer, students are constantly manipulating tools to support their construction of mathematical knowledge. Because digits supports the display of multiple tools, students can compare solution pathways and validate solutions using different tools and strategies. Through this ability to compare the effectiveness and efficiency of different tools for each problem situation, students are able to critically determine the most strategic application. Students must make decisions about which tools are most appropriate for a given problem situation and how to apply them.

Example

4) Suppose a triangle has sides of lengths 3 in . and 4 in . that have an included 90° angle. Is this enough information to form the triangle? If so, is the triangle unique? Explain.

digits offers an array of interactive Math Tools students can access at any time. Sometimes a Math Tool is embedded within an Example to help students develop an understanding of when a certain tool might be useful.

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:

- What tools could you use to solve this problem? How can each one help you?
- Which tool is more useful for this problem? Explain your choice.
- Why is this tool better than [another tool mentioned]?
- Before you solve the problem, can you estimate the solution?

Attend to precision.

: Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions.

Since presentation and defense of solution strategies is foundational to the instructional design of digits, students are expected to communicate precisely and with clarity. To support communication and comprehension, Vocabulary and Key Concepts can be accessed at any time with precise definitions, explanations, and supporting visuals. Vocabulary in context is also hyperlinked to its definitions so that students and teachers have immediate access at point of use. Additionally, lessons include a Key Concept review to reinforce and summarize the instructional intent of the lesson. As students communicate to others, these reference resources scaffold the development of precision and clarity.

Usion 10-3: Equivalent Ration

Key Concept

4.) You can find equivalent ratios by multiplying or dividing each term of the ratio by the same nonzero number.

The Student Companion contains Vocabulary exercises that ask students to use clear definitions or explanations of terms and concepts from the lesson.

Do you UNDERSTAND?
4. Vocabulary Explain the difference between rational numbers and integers.

There are also Writing and Compare and Contrast exercises where students are asked to provide clear, concise explanations of terms, concepts, or processes.
4. Writing An airplane descends from $35,000 \mathrm{ft}$ at a rate of 33 feet per second. Explain how to use this information to find the altitude of the airplane after 12 minutes.
5. Compare and Contrast Explain how the coordinates of a point and its reflection across the x-axis are the same and how they are different.

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:

- What do the symbols that you used mean?
- What units of measure are you using (for measurement problems)?
- What concepts or theorems did you use to solve the problem? How exactly do these relate to the problem?

Abstract

Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5+7 \times 3$, in preparation for learning about the distributive property. In the expression $x^{2}+9 x+14$, older students can see the 14 as 2×7 and the 9 as $2+7$. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5-3(x-y)^{2}$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y.

Through a balanced approach of exploration, explicit instruction, and class collaboration, digits supports the discovery and application of structure as a means for deepening understanding of a mathematical context.

Focus on mathematical properties and their application through successive topics provides extensive transferability opportunities. Students gain deep understanding of the structure behind the properties with concrete patterns before making general, abstract conclusions. Launches provide opportunities for students to look for patterns they can use to solve problems.

Launch

Look for a pattern in the table.

Powers of 4	Powers of 2
$4^{2}=16$	$2^{4}=16$
$4^{3}=64$	$2^{6}=64$
$4^{4}=256$	$2^{8}=256$
$4^{5}=1,024$	$2^{10}=1,024$

Based on the pattern, what value of x makes the statement $4^{15}=2^{x}$ true?

Featuring Understanding by Design® principles as the pedagogical framework, digits consistently asks students to make connections between what they are currently learning and what they have learned previously and to construct content relationships.

Each lesson features a Focus Question that does not ask students to just summarize the content of the lesson, but to explain how the content of the lesson builds on prior knowledge.

Focus Question

You previously learned how to multiply and divide expressions with exponents. How can you apply what you know to operations with numbers in scientific notation?

Throughout digits new concepts are presented in multiple ways, providing opportunities for students to step back and shift perspective. Shifting perspective provides an opportunity to see a problem in a new light, and a previously unnoticed underlying structure may become apparent.

AOA

 Lewon 4-4: Subtraeting integersIntro
Turning around and moving forward is the same as moving backward. This number
line model represents both the difference 7-20 and the sum $7+(-20)$.
$7-20=-13 \quad 7+(-20)=-13$
Subtracting 20 is the same as adding the opposite of 20 .

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:

- What do the different parts of the expression or the equation you are using tell you about possible correct answers?
- What do you notice about the answers to these exercises?

MP8 Look for and express regularity in repeated reasoning.

: Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through $(1,2)$ with slope 3 , middle school students might abstract the equation $\frac{(y-2)}{(x-1)}=3$. Noticing the regularity in the way terms cancel when expanding $(x-1)(x+1),(x-1)\left(x^{2}+x+1\right)$, and $(x-1)\left(x^{3}+x^{2}+x+1\right)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the process, while attending to the details. They continually evaluate the reasonableness of their intermediate results.

The Understanding by Design® pedagogical framework of digits exposes students to a regularity and "sameness" of reasoning across topics and grades. Special features called "Know-Need-Plan" and "Think-Write" highlight how the same type of reasoning is applicable in many different mathematical contexts.

Reflect Questions in the Student Companion ask students to consider their work on the Launch and look for repetition in calculations.

Reflect

Could you have reached the same conclusion about the expressions without trying different values for s ? Explain.

Reasoning and Compare and Contrast exercises prompt students to think about similar problems they have previously solved or to generalize results to other problem situations.
4. Reasoning Would the relationship between the vertices of any figure rotated 360° and its image always be true regardless of the point of rotation? Explain.

Students look for general methods or shortcuts that can make the problem solving process more efficient.
5. Compare and Contrast Explain how to determine whether the addition method or the subtraction method is most efficient for solving a system of equations.

As you work through the lessons, consider asking these questions to help your students develop proficiency with this standard:
-What patterns do you see? Can you make a generalization?

- What relationships do you see in the problem?

Grade 6 Standards Correlation

6.RP Ratios and Proportional Relationships

6.RP.A. 1	Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities.	$\begin{aligned} & 10-1 \text { thru } \\ & 10-6 \end{aligned}$
6.RP.A. 2	Understand the concept of a unit rate $\frac{a}{b}$ associated with a ratio $a: b$ with $b \neq 0$, and use rate language in the context of a ratio relationship.	$\begin{aligned} & \text { 11-1 thru } \\ & 11-6,12-2 \end{aligned}$
6.RP.A. 3	Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.	$\begin{aligned} & 10-6,11-5, \\ & 11-6,12-5 \end{aligned}$
6.RP.A.3a	Make tables of equivalent ratios relating quantities with whole number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane. Use tables to compare ratios.	$\begin{aligned} & 10-2,10-3, \\ & 10-6,12-1 \\ & 12-2 \end{aligned}$
6.RP.A.3b	Solve unit rate problems including those involving unit pricing and constant speed.	$\begin{aligned} & 7-2,7-3 \\ & 7-4,11-2 \\ & 11-3,11-5 \end{aligned}$
6.RP.A.3c	Find a percent of a quantity as a rate per 100 (e.g., 30% of a quantity means $\frac{30}{100}$ times the quantity); solve problems involving finding the whole, given a part and the percent.	$\begin{aligned} & \text { 12-3, 12-4, } \\ & 12-5 \end{aligned}$
6.RP.A.3d	Use ratio reasoning to convert measurement units; manipulate and transform units appropriately when multiplying or dividing quantities.	$\begin{aligned} & 11-4,11-5, \\ & 11-6 \end{aligned}$

6.NS The Number System

Apply and extend previous understandings of multiplication and division to divide fractions by fractions.

| 6.NS.A.1 | Interpret and compute quotients of fractions, and solve word problems
 involving division of fractions by fractions, e.g., by using visual fraction models
 and equations to represent the problem. | Topics 5
 and 6 |
| :--- | :--- | :--- | :--- |
| Compute fluently with multi-digit numbers and find common factors and multiples. | | |

6.NS The Number System (continued)

Apply and extend previous understandings of numbers to the system of rational numbers.

6.NS.C. 5	Understand that positive and negative numbers are used together to describe quantities having opposite directions or values; use positive and negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation.	8-1, 9-1
6.NS.C. 6	Understand a rational number as a point on the number line. Extend number line diagrams and coordinate axes familiar from previous grades to represent points on the line and in the plane with negative number coordinates.	$\begin{aligned} & 8-1,8-4, \\ & 9-1,9-2, \\ & 9-3,9-4 \end{aligned}$
6.NS.C.6a	Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself.	8-1, 9-1
6.NS.C.6b	Understand signs of numbers in ordered pairs as indicating locations in quadrants of the coordinate plane; recognize that when two ordered pairs differ only by signs, the locations of the points are related by reflections across one or both axes.	$\begin{aligned} & 8-4,8-6, \\ & 9-4,9-6 \end{aligned}$
6.NS.C.6c	Find and position integers and other rational numbers on a horizontal or vertical number line diagram; find and position pairs of integers and other rational numbers on a coordinate plane.	$\begin{aligned} & 8-1,8-2, \\ & 8-4,9-1, \\ & 9-3,9-4 \\ & 15-2 \text { thru } \\ & 15-6 \end{aligned}$
6.NS.C. 7	Understand ordering and absolute value of rational numbers.	8-3, 9-3
6.NS.C.7a	Interpret statements of inequality as statements about the relative position of two numbers on a number line diagram.	$\begin{aligned} & 8-2,9-2, \\ & 9-3 \end{aligned}$
6.NS.C.7b	Write, interpret, and explain statements of order for rational numbers in real-world contexts.	$\begin{aligned} & 8-2,9-2, \\ & 9-3,9-6 \end{aligned}$
6.NS.C.7c	Understand the absolute value of a rational number as its distance from 0 on the number line; interpret absolute value as magnitude for a positive or negative quantity in a real-world situation.	$\begin{aligned} & 8-3,8-6, \\ & 9-2,9-3 \end{aligned}$
6.NS.C.7d	Distinguish comparisons of absolute value from statements about order.	8-3, 9-3
6.NS.C. 8	Solve real-world and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.	$\begin{aligned} & 4-2,8-4, \\ & 8-5,9-5 \end{aligned}$

6.EE Expressions and Equations

Apply and extend previous understandings of arithmetic to algebraic expressions.
6.EE.A. $1 \quad$ Write and evaluate numerical expressions involving whole-number exponents. $\quad 1-5$
6.EE.A. $2 \quad$ Write, read, and evaluate expressions in which letters stand for numbers. $\quad 1-3,1-4$
6.EE.A.2a Write expressions that record operations with numbers and with letters standing for numbers.

Grade 6 Standards Correlation continued

6.EE Expressions and Equations (continued)

Apply and extend previous understandings of arithmetic to algebraic expressions.

6.EE.A.2b	Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity.	$\begin{aligned} & 1-2,2-1, \\ & 2-2,2-3, \\ & 2-5,2-6 \end{aligned}$
6.EE.A.2c	Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations).	$\begin{aligned} & 1-4,1-5, \\ & 1-6,7-3 \end{aligned}$ Topic 13, 14-3 thru 14-6
6.EE.A. 3	Apply the properties of operations to generate equivalent expressions.	Topic 2
6.EE.A. 4	Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them).	$\begin{aligned} & 1-1,2-1, \\ & 2-2,3-1 \end{aligned}$
Reason about and solve one-variable equations and inequalities.		
6.EE.B. 5	Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.	$\begin{aligned} & 3-1,3-2, \\ & 3-6,3-7 \end{aligned}$
6.EE.B. 6	Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set.	1-2, 1-3
6.EE.B. 7	Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q, and x are all nonnegative rational numbers.	$\begin{aligned} & 3-3,3-4, \\ & 3-7 \end{aligned}$
6.EE.B. 8	Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams.	$\begin{aligned} & 3-5,3-6, \\ & 3-7 \end{aligned}$

Represent and analyze quantitative relationships between dependent and independent variables.
6.EE.C. 9 Use variables to represent two quantities in a real-world problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

4-1, 4-2, 4-3, 4-4, 12-1

6.G Geometry

Solve real-world and mathematical problems involving area, surface area, and volume.
6.G.A. 1 Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and 13-3, 13-4, other shapes; apply these techniques in the context of solving real-world and 13-5, 13-6 mathematical problems.

6.G Geometry (continued)

Solve real-world and mathematical problems involving area, surface area, and volume.

6.G.A. 2	Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $V=l w h$ and $V=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.	14-5, 14-6
6.G.A. 3	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving real-world and mathematical problems.	$\begin{aligned} & 8-5,8-6, \\ & 9-5,9-6 \end{aligned}$
6.G.A. 4	Represent three-dimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving real-world and mathematical problems.	$\begin{aligned} & 14-1,14-2, \\ & 14-3,14-4, \\ & 14-6 \end{aligned}$

6.SP Statistics and Probability

Develop understanding of statistical variability.

6.SP.A. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.	15-1, 15-6
6.SP.A. 2	Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.	$\begin{aligned} & 15-2,15-3, \\ & 16-2,16-3 \end{aligned}$
6.SP.A. 3	Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.	$\begin{aligned} & 16-1,16-2, \\ & 16-3,16-4 \\ & 16-5,16-6 \end{aligned}$

Summarize and describe distributions.

6.SP.B. 4	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.	$\begin{aligned} & 15-2,15-3, \\ & 15-4 \end{aligned}$
6.SP.B. 5	Summarize numerical data sets in relation to their context, such as by:	15-6, 16-6
6.SP.B.5a	Reporting the number of observations.	15-6
6.SP.B.5b	Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.	15-1
6.SP.B.5c	Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.	$\begin{aligned} & 16-1,16-2, \\ & 16-3,16-4 \\ & 16-5,16-6 \end{aligned}$
6.SP.B.5d	Summarize numerical data sets in relation to their context, such as by: Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.	$\begin{aligned} & 16-1,16-2, \\ & 16-3,16-4 \\ & 16-5,16-6 \end{aligned}$

Grade 6 Lesson Correlation

	Standards of Mathematical Content	Standards of Mathematical Practice
Unit A: Expressions and Equations		
Topic 1: Variables and Equations		
Lesson 1-1: Numerical Expressions	6.EE.A.2, 6.EE.A.2c, 6.EE.A. 4	MP2, MP3, MP6, MP7, MP8
Lesson 1-2: Algebraic Expressions	6.EE.A.2, 6.EE.A.2a, 6.EE.A.2b, 6.EE.B. 6	MP2, MP4, MP6, MP7
Lesson 1-3: Writing Algebraic Expressions	6.EE.A.2, 6.EE.A.2a, 6.EE.B. 6	MP1, MP2, MP4, MP5, MP6
Lesson 1-4: Evaluating Algebraic Expressions	6.EE.A.2, 6.EE.A.2c	MP1, MP3, MP4, MP5
Lesson 1-5: Expressions with Exponents	6.EE.A.1, 6.EE.A.2c	MP1, MP2, MP4, MP5, MP6
Lesson 1-6: Problem Solving	6.EE.A.2, 6.EE.A.2a	MP2, MP3, MP4, MP5, MP7
Topic 2: Equivalent Expressions		
Lesson 2-1: The Identity and Zero Properties	6.EE.A.2c, 6.EE.A.3, 6.EE.A. 4	MP1, MP2, MP3, MP7
Lesson 2-2: The Commutative Properties	6.EE.A.3, 6.EE.A. 4	MP2, MP4, MP5, MP7, MP8
Lesson 2-3: The Associative Properties	6.EE.A.3, 6.EE.A. 4	MP1, MP3, MP4, MP7, MP8
Lesson 2-4: Greatest Common Factor	6.NS.B. 4	MP1, MP2, MP3, MP7
Lesson 2-5: The Distributive Property	6.NS.B.4, 6.EE.A.3, 6.EE.A. 4	MP4, MP5, MP6, MP8
Lesson 2-6: Least Common Multiple	6.NS.B. 4	MP2, MP3, MP4, MP6, MP7
Lesson 2-7: Problem Solving	6.NS.B.4, 6.EE.A. 3	MP1, MP4, MP5, MP6, MP7
Topic 3: Equations and Inequalities		
Lesson 3-1: Expressions to Equations	6.EE.A.2, 6.EE.B. 5	MP1, MP2, MP6, MP7
Lesson 3-2: Balancing Equations	6.EE.A. 2	MP2, MP3, MP5, MP6, MP7
Lesson 3-3: Solving Addition and Subtraction Equations	6.EE.B. 7	MP2, MP3, MP4, MP7, MP8
Lesson 3-4: Solving Multiplication and Division Equations	6.EE.B. 7	MP2, MP3, MP4, MP5, MP7
Lesson 3-5: Equations to Inequalities	6.EE.B. 8	MP2, MP3, MP4, MP5
Lesson 3-6: Solving Inequalities	6.EE.B.5, 6.EE.B. 8	MP2, MP4, MP5, MP8
Lesson 3-7: Problem Solving	6.EE.B.5, 6.EE.B. 7	MP1, MP2, MP4, MP5, MP6
Topic 4: Two-Variable Relationships		
Lesson 4-1: Using Two Variables to Represent a Relationship	6.EE.C. 9	MP1, MP2, MP4, MP8
Lesson 4-2: Analyzing Patterns Using Tables and Graphs	6.NS.C.8, 6.EE.C. 9	MP2, MP3, MP5, MP6, MP8
Lesson 4-3: Relating Tables and Graphs to Equations	6.EE.C. 9	MP1, MP4, MP5, MP6, MP7
Lesson 4-4: Problem Solving	6.EE.A.2c, 6.EE.C. 9	MP1, MP2, MP4, MP5, MP7

	Standards of Mathematical Content	Standards of Mathematical Practice
Unit B: Number System, Part 1		
Topic 5: Multiplying Fractions		
Lesson 5-1: Multiplying Fractions and Whole Numbers	6.NS.A. 1	MP4, MP5, MP6, MP8
Lesson 5-2: Multiplying Two Fractions	6.NS.A. 1	MP4, MP5, MP6, MP7
Lesson 5-3: Multiplying Fractions and Mixed Numbers	6.NS.A. 1	MP2, MP3, MP4, MP6
Lesson 5-4: Multiplying Mixed Numbers	6.NS.A. 1	MP1, MP2, MP5, MP6, MP7
Lesson 5-5: Problem Solving	6.NS.A. 1	MP1, MP2, MP4, MP6
Topic 6: Dividing Fractions		
Lesson 6-1: Dividing Fractions and Whole Numbers	6.NS.A. 1	MP2, MP3, MP4, MP8
Lesson 6-2: Dividing Unit Fractions by Unit Fractions	6.NS.A. 1	MP1, MP2, MP6, MP7
Lesson 6-3: Dividing Fractions by Fractions	6.NS.A. 1	MP1, MP2, MP4, MP5, MP6
Lesson 6-4: Dividing Mixed Numbers	6.NS.A. 1	MP1, MP2, MP4, MP7, MP8
Lesson 6-5: Problem Solving	6.NS.A. 1	MP1, MP2, MP3, MP4, MP8
Topic C: Number System, Part 2		
Topic 7: Fluency with Decimals		
Lesson 7-1: Adding and Subtracting Decimals	6.NS.B. 3	MP1, MP2, MP4, MP7
Lesson 7-2: Multiplying Decimals	6.RP.A.3b, 6.NS.B. 3	MP1, MP3, MP4, MP6, MP8
Lesson 7-3: Dividing Multi-Digit Numbers	6.RP.A.3b, 6.NS.B.2, 6.EE.A.2c	MP2, MP3, MP4, MP6, MP7
Lesson 7-4: Dividing Decimals	6.RP.A.3b, 6.NS.B. 3	MP2, MP3, MP4, MP6, MP7
Lesson 7-5: Decimals and Fractions	6.NS.C.7a	MP1, MP2, MP3, MP6, MP8
Lesson 7-6: Comparing and Ordering Decimals and Fractions	6.NS.C. 7	MP2, MP3, MP4, MP6
Lesson 7-7: Problem Solving	6.NS.B.2, 6.NS.B.3, 6.EE.B. 7	MP1, MP2, MP5, MP7, MP8
Topic 8: Integers		
Lesson 8-1: Integers and the Number Line	6.NS.C.5, 6.NS.C.6a, 6.NS.C.6c	MP1, MP2, MP4, MP5, MP8
Lesson 8-2: Comparing and Ordering Integers	$\begin{aligned} & \text { 6.NS.C.7, 6.NS.C.7a, } \\ & \text { 6.NS.C.7b } \end{aligned}$	MP1, MP2, MP4, MP6, MP7
Lesson 8-3: Absolute Value	6.NS.C.7, 6.NS.C.7b, 6.NS.C.7c, 6.NS.C.7d	MP1, MP3, MP4, MP5, MP6
Lesson 8-4: Integers and the Coordinate Plane	6.NS.C.6b, 6.NS.C.6c, 6.NS.C. 8	MP2, MP3, MP5, MP6, MP7
Lesson 8-5: Distance	6.NS.C.8, 6.G.B. 3	MP1, MP2, MP5, MP6, MP8
Lesson 8-6: Problem Solving	6.NS.C.6b, 6.NS.C.7, 6.NS.C.7c, 6.G.B. 3	MP1, MP2, MP4, MP5, MP7
Topic 9: Rational Numbers		
Lesson 9-1: Rational Numbers and the Number Line	6.NS.C.5, 6.NS.C.6a, 6.NS.C.6c	MP1, MP3, MP5, MP6

Grade 6 Lesson Correlation continued

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 9: Rational Numbers (continued)		
Lesson 9-2: Comparing Rational Numbers	6.NS.C.7, 6.NS.C.7a, 6.NS.C.7b, 6.NS.C.7c	MP1, MP2, MP3, MP6, MP7
Lesson 9-3: Ordering Rational Numbers	$\begin{aligned} & \text { 6.NS.C.7, 6.NS.C.7a, } \\ & \text { 6.NS.C.7b } \end{aligned}$	MP1, MP2, MP5, MP7, MP8
Lesson 9-4: Rational Numbers and the Coordinate Plane	6.NS.C.6b, 6.NS.C.6c	MP2, MP5, MP6, MP7
Lesson 9-5: Polygons in the Coordinate Plane	6.NS.C.6c, 6.NS.C.8, 6.G.B. 3	MP4, MP5, MP6, MP7, MP8
Lesson 9-6: Problem Solving	$\begin{aligned} & \text { 6.NS.C.6b, 6.NS.C.7, } \\ & \text { 6.NS.C.7b, 6.G.B. } 3 \end{aligned}$	MP1, MP2, MP6, MP7, MP8
Unit D: Ratios and Proportional Relationships		
Topic 10: Ratios		
Lesson 10-1: Ratios	6.RP.A. 1	MP1, MP2, MP3, MP4, MP7
Lesson 10-2: Exploring Equivalent Ratios	6.RP.A. 3	MP2, MP4, MP5, MP6, MP8
Lesson 10-3: Equivalent Ratios	6.RP.A. 3	MP2, MP4, MP5, MP8
Lesson 10-4: Ratios as Fractions	6.RP.A.1, 6.RP.A. 3	MP1, MP2, MP4, MP6
Lesson 10-5: Ratios as Decimals	6.RP.A.1, 6.RP.A. 3	MP1, MP2, MP3, MP6
Lesson 10-6: Problem Solving	6.RP.A.1, 6.RP.A. 3	MP1, MP4, MP6, MP7, MP8
Topic 11: Rates		
Lesson 11-1: Unit Rates	6.RP.A.2, 6.RP.A. 3	MP2, MP4, MP6, MP7
Lesson 11-2: Unit Prices	6.RP.A.3b	MP1, MP2, MP4, MP5
Lesson 11-3: Constant Speed	6.RP.A.3b	MP3, MP4, MP5, MP6, MP7
Lesson 11-4: Measurements and Ratios	6.RP.A.3d	MP2, MP3, MP4, MP6, MP7
Lesson 11-5: Choosing the Appropriate Rate	6.RP.A.3, 6.RP.A.3d, 6.RP.A.3d	MP2, MP3, MP4, MP6, MP7
Lesson 11-6: Problem Solving	6.RP.A.3, 6.RP.A.3d	MP2, MP3, MP6, MP7, MP8
Topic 12: Ratio Reasoning		
Lesson 12-1: Plotting Ratios and Rates	6.RP.A.3a, 6.EE.C. 9	MP2, MP4, MP5, MP6, MP7
Lesson 12-2: Recognizing Proportionality	6.RP.A.2, 6.RP.A.3, 6.RP.A.3a	MP2, MP4, MP5, MP6, MP8
Lesson 12-3: Introducing Percents	6.RP.A.3c	MP2, MP3, MP4, MP7
Lesson 12-4: Using Percents	6.RP.A.3c	MP3, MP4, MP5, MP6, MP7
Lesson 12-5: Problem Solving	6.RP.A.3, 6.RP.A.3c	MP1, MP2, MP3, MP6, MP7
Unit E: Geometry		
Topic 13: Area		
Lesson 13-1: Rectangles and Squares	6.EE.A.2c, 6.G.A. 1	MP1, MP2, MP5, MP7, MP8
Lesson 13-2: Right Triangles	6.EE.A.2c, 6.G.A. 1	MP4, MP6, MP7, MP8
Lesson 13-3: Parallelograms	6.EE.A.2c, 6.G.A. 1	MP2, MP5, MP6, MP7
Lesson 13-4: Other Triangles	6.EE.A.2c, 6.G.A. 1	MP2, MP3, MP6, MP7
Lesson 13-5: Polygons	6.EE.A.2c, 6.G.A. 1	MP1, MP3, MP5, MP6, MP8
Lesson 13-6: Problem Solving	6.EE.A.2c, 6.G.A. 1	MP1, MP2, MP4, MP5, MP6

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 14: Surface Area and Volume		
Lesson 14-1: Analyzing Three-Dimensional Figures	6.G.A.1, 6.G.B. 4	MP1, MP2, MP3, MP5, MP8
Lesson 14-2: Nets	6.G.B. 4	MP2, MP4, MP5, MP6
Lesson 14-3: Surface Areas of Prisms	6.EE.A.2c, 6.G.B. 4	MP1, MP2, MP5, MP6, MP7
Lesson 14-4: Surface Areas of Pyramids	6.EE.A.2c, 6.G.B. 4	MP2, MP4, MP5, MP6, MP7
Lesson 14-5: Volumes of Rectangular Prisms	6.EE.A.2c, 6.G.B. 2	MP2, MP4, MP7, MP8
Lesson 14-6: Problem Solving	6.EE.A.2c, 6.G.B.2, 6.G.B. 4	MP1, MP2, MP3, MP4, MP6
Unit F: Statistics		
Topic 15: Data Displays		
Lesson 15-1: Statistical Questions	6.NS.C.6c, 6.SP.A.1, 6.SP.B.5b	MP2, MP3, MP6, MP8
Lesson 15-2: Dot Plots	6.NS.C.6c, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5c	MP1, MP2, MP5, MP6, MP7
Lesson 15-3: Histograms	6.NS.C.6c, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5c	MP2, MP3, MP4, MP5
Lesson 15-4: Box Plots	6.NS.C.6c, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5c	MP2, MP4, MP5, MP6
Lesson 15-5: Choosing an Appropriate Display	6.NS.C.6c, 6.SP.B. 4	MP1, MP3, MP6, MP7
Lesson 15-6: Problem Solving	$\begin{gathered} \text { 6.NS.C.6c, 6.SP.B.4, 6.SP.B.5, } \\ \text { 6.SP.B.5a } \end{gathered}$	MP1, MP2, MP3, MP4, MP7
Topic 16: Measures of Center and Variation		
Lesson 16-1: Median	6.SP.A.3, 6.SP.B.4, 6.SP.B.5, 6.SP.B.5c, 6.SP.B.5d	MP2, MP3, MP4, MP5, MP6
Lesson 16-2: Mean	6.SP.A.3, 6.SP.B.5, 6.SP.B.5c, 6.SP.B.5d	MP2, MP5, MP6, MP7
Lesson 16-3: Variability	6.SP.A.2, 6.SP.A.3, 6.SP.B.5, 6.SP.B.5c, 6.SP.B.5d	MP3, MP4, MP5, MP6
Lesson 16-4: Interquartile Range	6.SP.A.3, 6.SP.B.5, 6.SP.B.5c, 6.SP.B.5d	MP1, MP2, MP6, MP7, MP8
Lesson 16-5: Mean Absolute Deviation	$\begin{aligned} & \text { 6.SP.A.3, 6.SP.B.5, 6.SP.B.5c, } \\ & \text { 6.SP.B.5d } \end{aligned}$	MP2, MP3, MP4, MP6, MP8
Lesson 16-6: Problem Solving	$\begin{aligned} & \text { 6.SP.A.3, 6.SP.B.5, 6.SP.B.5c, } \\ & \text { 6.SP.B.5d } \end{aligned}$	MP2, MP3, MP4, MP5, MP6

Grade 7 Standards Correlation

Number
Standard for Mathematical Content
Lesson(s)

7.RP Ratios and Proportional Relationships

Analyze proportional relationships and use them to solve real-world and mathematical problems.

7.RP.A. 1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.	Topic 1
7.RP.A. 2	Recognize and represent proportional relationships between quantities.	$\begin{aligned} & 2-1 \text { thru } \\ & 2-4,2-6, \\ & 3-1,3-2, \\ & 3-3,3-5 \end{aligned}$
7.RP.A.2a	Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	$\begin{aligned} & 2-1,2-2, \\ & 2-6 \end{aligned}$
7.RP.A.2b	Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	$\begin{aligned} & 2-3,2-4, \\ & 2-6,3-1 \end{aligned}$
7.RP.A.2c	Represent proportional relationships by equations.	$\begin{aligned} & 2-4,2-6, \\ & 3-1 \end{aligned}$
7.RP.A.2d	Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.	$\begin{aligned} & 2-2,2-3, \\ & 2-6,14-2 \\ & \text { thru 14-5, } \\ & 14-7 \end{aligned}$
7.RP.A. 3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	$\begin{aligned} & 3-2,3-3, \\ & 3-5,3-6, \\ & 3-7,6-6, \\ & 14-2 \text { thru } \\ & 14-5,14-7, \\ & 17-7 \end{aligned}$

7.NS The Number System

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

7.NS.A. 1	Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.	$\begin{aligned} & 4-1,4-2, \\ & 4-4,4-5 \end{aligned}$
7.NS.A.1a	Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.	4-1
7.NS.A.1b	Understand $p+q$ as the number located a distance $\|q\|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.	$\begin{aligned} & 4-2,4-3, \\ & 4-5,4-7 \end{aligned}$
7.NS.A.1c	Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.	$\begin{aligned} & 4-4,4-6 \text {, } \\ & 4-7 \end{aligned}$

7.NS The Number System (continued)

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
7.NS.A.1d Apply properties of operations as strategies to add and subtract rational numbers. 4-3
7.NS.A. 2 Apply and extend previous understandings of multiplication and division and of 5-1 thrufractions to multiply and divide rational numbers.5-5
7.NS.A.2a Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations,5-1, 5-2particularly the distributive property, leading to products such as $(-1)(-1)=1$and the rules for multiplying signed numbers. Interpret products of rationalnumbers by describing real-world contexts.
7.NS.A.2b Understand that integers can be divided, provided that the divisor is not zero,and every quotient of integers (with non-zero divisor) is a rational number.5-3, 5-4,6-1, 6-2,If p and q are integers, then $\left(\frac{p}{q}\right)=\frac{(-p)}{q}=\frac{p}{(-q)}$. Interpret quotients of rationalnumbers by describing real-world contexts.
7.NS.A.2cApply properties of operations as strategies to multiply and divide rationalnumbers.
7.NS.A.2dConvert a rational number to a decimal using long division; know that thedecimal form of a rational number terminates in Os or eventually repeats.6-1, 6-2,7.NS.A. 3Solve real-world and mathematical problems involving the four operations with5-5, 6-3,rational numbers.

7.EE Expressions and Equations

Use properties of operations to generate equivalent expressions.

7.EE.A. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	Topic 7
7.EE.A. 2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."	Topic 7

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

7.EE.B. 3	Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.	4-7, 5-6, 8-3, 8-4, 8-5, 11-2 thru 11-5, Topic 13, 14-2 thru 14-5, 14-7, 16-1, 16-3 thru 16-6, 17-4, 17-6, 17-7
7.EE.B. 4	Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.	Topic 8, Topic 9 10-1, Topic 11, 12-6, Topic 13

Grade 7 Standards Correlation continued

Number
Standard for Mathematical Content
Lesson(s)

7.EE Expressions and Equations (continued)

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

7.EE.B.4a	Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.	$\begin{aligned} & 8-1,8-2, \\ & 8-3,8-4, \\ & 8-5,10-1 \\ & 10-3 \text { thru } \\ & 10-6,11-1 \end{aligned}$
7.EE.B.4b	Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.	$\begin{aligned} & 9-1,9-2, \\ & 9-3,9-4, \\ & 9-5 \end{aligned}$

7.G Geometry

Draw, construct, and describe geometrical figures and describe the relationships between them.

7.G.A. 1	Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	2-5, 2-6
7.G.A. 2	Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	$\begin{aligned} & \text { Topic 10, } \\ & \text { 11-1, 11-2, } \\ & \text { 11-3, 12-1, } \\ & 12-2,12-3, \\ & 12-6 \end{aligned}$
7.G.A. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	$\begin{aligned} & 12-4,12-5, \\ & 12-6 \end{aligned}$

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

7.G.B. 4	Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	$\begin{aligned} & \text { 11-1, 11-2, } \\ & 11-3,11-4, \\ & 11-5 \end{aligned}$
7.G.B. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	$\begin{aligned} & 10-2,10-3, \\ & 10-4,10-5, \\ & 10-6 \end{aligned}$
7.G.B.6	Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	$\begin{aligned} & 12-6,13-1, \\ & 13-2,13-3, \\ & 13-4,13-5 \end{aligned}$

7.SP Statistics and Probability

Use random sampling to draw inferences about a population.

7.SP.A. 1

Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences.

14-1, 14-2,
14-3, 14-4, 14-5, 14-6, 14-7, 15-1, 15-2

7.SP Statistics and Probability (continued)

Use random sampling to draw inferences about a population.
7.SP.A. 2 Use data from a random sample to draw inferences about a population with

14-2, 14-5, an unknown characteristic of interest. Generate multiple samples (or simulated 14-7 samples) of the same size to gauge the variation in estimates or predictions.

Draw informal comparative inferences about two populations.

7.SP.B. 3	Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.	15-2, 15-5
7.SP.B. 4	Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations.	$\begin{aligned} & 15-1,15-2, \\ & 15-3,15-4 \\ & 15-5,15-6 \end{aligned}$

Investigate chance processes and develop, use, and evaluate probability models.

7.SP.C. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	16-1
7.SP.C. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.	$\begin{aligned} & 16-1,16-3, \\ & 17-4 \end{aligned}$
7.SP.C. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.	$\begin{aligned} & 16-2,16-4, \\ & 16-5,16-6, \\ & 17-7 \end{aligned}$
7.SP.C.7a	Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.	$\begin{aligned} & 16-4,16-5, \\ & 16-6 \end{aligned}$
7.SP.C.7b	Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	16-5, 16-6
7.SP.C. 8	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.	$\begin{aligned} & \text { 17-1, 17-2, } \\ & 17-3,17-4, \\ & 17-5,17-6, \\ & 17-7 \end{aligned}$
7.SP.C.8a	Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	17-3, 17-4
7.SP.C.8b	Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	$\begin{aligned} & 17-1,17-2, \\ & 17-3 \end{aligned}$
7.SP.C.8c	Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?	17-5

Grade 7 Lesson Correlation

	Standards of Mathematical Content	Standards of Mathematical Practice
Unit A: Ratios and Proportional Relationships		
Topic 1: Ratios and Rates		
Lesson 1-1: Equivalent Ratios	7.RP.A. 1	MP1, MP2, MP4, MP6, MP8
Lesson 1-2: Unit Rates	7.RP.A. 1	MP1, MP4, MP5, MP8
Lesson 1-3: Ratios With Fractions	7.RP.A. 1	MP2, MP6, MP7, MP8
Lesson 1-4: Unit Rates With Fractions	7.RP.A. 1	MP1, MP2, MP3, MP4
Lesson 1-5: Problem Solving	7.RP.A. 1	MP1, MP2, MP3, MP4, MP7
Topic 2: Proportional Relationships		
Lesson 2-1: Proportional Relationships and Tables	7.RP.A.2, 7.RP.A.2a	MP2, MP4, MP5, MP6, MP7
Lesson 2-2: Proportional Relationships and Graphs	7.RP.A.2a, 7.RP.A.2d	MP2, MP4, MP5, MP6, MP7
Lesson 2-3: Constant of Proportionality	7.RP.A.2, 7.RP.A.2b, 7.RP.A.2d	MP1, MP2, MP3, MP4, MP8
Lesson 2-4: Proportional Relationships and Equations	7.RP.A.2, 7.RP.A.2b, 7.RP.A.2c	MP1, MP2, MP4, MP6
Lesson 2-5: Maps and Scale Drawings	7.G.A. 1	MP2, MP3, MP4, MP5, MP7
Lesson 2-6: Problem Solving	7.RP.A.2, 7.RP.A.2a, 7.RP.A.2b, 7.RP.A.2c, 7.RP.A.2d, 7.G.A. 1	MP2, MP3, MP4, MP6, MP8
Topic 3: Percents		
Lesson 3-1: The Percent Equation	7.RP.A.2, 7.RP.A.2b, 7.RP.A.2c	MP1, MP2, MP3, MP6, MP7
Lesson 3-2: Using the Percent Equation	7.RP.A.2, 7.RP.A. 3	MP1, MP3, MP4, MP6, MP7
Lesson 3-3: Simple Interest	7.RP.A.2, 7.RP.A. 3	MP4, MP5, MP7, MP8
Lesson 3-4: Compound Interest	7.NS.A. 3	MP4, MP5, MP7, MP8
Lesson 3-5: Percent Increase and Decrease	7.RP.A.2, 7.RP.A. 3	MP2, MP3, MP4, MP7
Lesson 3-6: Markups and Markdowns	7.RP.A. 3	MP1, MP2, MP5, MP7, MP8
Lesson 3-7: Problem Solving	7.RP.A. 3	MP1, MP3, MP4, MP6, MP7
Unit B: Rational Numbers		
Topic 4: Adding and Subtracting Rational Numbers		
Lesson 4-1: Rational Numbers, Opposites, and Absolute Value	7.NS.A.1, 7.NS.A.1a	MP2, MP3, MP5, MP6, MP7
Lesson 4-2: Adding Integers	7.NS.A.1, 7.NS.A.1b	MP2, MP4, MP5, MP6, MP7
Lesson 4-3: Adding Rational Numbers	7.NS.A.1b, 7.NS.A.1d	MP1, MP2, MP4, MP5, MP6
Lesson 4-4: Subtracting Integers	7.NS.A.1, 7.NS.A.1c	MP2, MP4, MP5, MP6, MP7
Lesson 4-5: Subtracting Rational Numbers	7.NS.A.1, 7.NS.A.1b, 7.NS.A.1c, 7.NS.A.1d	MP1, MP2, MP5, MP6
Lesson 4-6: Distance on a Number Line	7.NS.A.1c	MP2, MP4, MP5, MP6, MP8
Lesson 4-7: Problem Solving	7.NS.A. 1 7.NS.A.1b, 7.NS.A.1c, 7.NS.A.1d, 7.EE.B. 3	MP1, MP2, MP4, MP5, MP6

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 5: Multiplying and Dividing Rational Numbers		
Lesson 5-1: Multiplying Integers	$\begin{gathered} \text { 7.NS.A.2, 7.NS.A.2a, } \\ \text { 7.NS.A.2c } \end{gathered}$	MP2, MP3, MP4, MP5, MP7
Lesson 5-2: Multiplying Rational Numbers	7.NS.A.2, 7.NS.A.2a	MP1, MP2, MP3, MP6, MP8
Lesson 5-3: Dividing Integers	7.NS.A.2, 7.NS.A.2b	MP2, MP3, MP4, MP8
Lesson 5-4: Dividing Rational Numbers	7.NS.A.2, 7.NS.A.2b	MP2, MP3, MP6, MP7
Lesson 5-5: Operations with Rational Numbers	7.NS.A.2, 7.NS.A.2c, 7.NS.A. 3	MP2, MP4, MP6, MP7
Lesson 5-6: Problem Solving	7.NS.A.3, 7.EE.B. 3	MP3, MP4, MP5, MP6, MP7
Topic 6: Decimals and Percents		
Lesson 6-1: Repeating Decimals	7.NS.A.2b, 7.NS.A.2d	MP2, MP3, MP4, MP6
Lesson 6-2: Terminating Decimals	7.NS.A.2b, 7.NS.A.2d	MP2, MP3, MP6, MP8
Lesson 6-3: Percents Greater Than 100	7.NS.A. 3	MP2, MP3, MP4, MP6, MP7
Lesson 6-4: Percents Less Than 1	7.NS.A. 3	MP2, MP3, MP4, MP6, MP7
Lesson 6-5: Fractions, Decimals, and Percents	$\begin{gathered} \text { 7.NS.A.2b, 7.NS.A.2d, } \\ \text { 7.NS.A. } 3 \end{gathered}$	MP1, MP2, MP3, MP4, MP5
Lesson 6-6: Percent Error	7.RP.A. 3	MP2, MP3, MP4, MP5, MP7
Lesson 6-7: Problem Solving	7.NS.A. 3	MP1, MP3, MP4, MP6, MP8
Topic C: Expressions and Equations		
Topic 7: Equivalent Expressions		
Lesson 7-1: Expanding Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP2, MP3, MP4, MP7, MP8
Lesson 7-2: Factoring Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP2, MP3, MP6, MP7, MP8
Lesson 7-3: Adding Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP2, MP4, MP6, MP7
Lesson 7-4: Subtracting Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP1, MP2, MP6, MP7, MP8
Lesson 7-5: Problem Solving	7.EE.A.1, 7.EE.A. 2	MP1, MP2, MP4, MP5, MP7
Topic 8: Equations		
Lesson 8-1: Solving Simple Equations	7.EE.B.4, 7.EE. ${ }^{\text {a }}$. 4 a	MP2, MP5, MP6, MP7, MP8
Lesson 8-2: Writing Two-Step Equations	7.EE.B.4, 7.EE.B.4a	MP1, MP2, MP4, MP6, MP8
Lesson 8-3: Solving Two-Step Equations	7.EE.B.3, 7.EE.B.4, 7.EE.B.4a	MP1, MP3, MP4, MP5, MP8
Lesson 8-4: Solving Equations Using the Distributive Property	7.EE.B.3, 7.EE.B.4, 7.EE.B.4a	MP1, MP2, MP4, MP6, MP7
Lesson 8-5: Problem Solving	7.EE.B.3, 7.EE.B.4, 7.EE.B.4a	MP2, MP4, MP5, MP6, MP7
Topic 9: Inequalities		
Lesson 9-1: Solving Inequalities Using Addition or Subtraction	7.EE.B.4, 7.EE.B.4b	MP1, MP2, MP3, MP4, MP5
Lesson 9-2: Solving Inequalities Using Multiplication or Division	7.EE.B.4, 7.EE.B.4b	MP1, MP2, MP5, MP7, MP8

Grade 7 Lesson Correlation continued

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 9: Inequalities (continued)		
Lesson 9-3: Solving Two-Step Inequalities	7.EE.B.4, 7.EE.B.4b	MP1, MP3, MP4, MP6, MP7
Lesson 9-4: Solving Multi-Step Inequalities	7.Ee.B.4, 7.EE.B.4b	MP1, MP3, MP4, MP6, MP8
Lesson 9-5: Problem Solving	7.EE.B.4, 7.EE.B.4b	MP2, MP3, MP4, MP6, MP8
Unit D: Geometry		
Topic 10: Angles		
Lesson 10-1: Measuring Angles	7.EE.B.4, 7.EE.B.4a, 7.G.A. 2	MP1, MP3, MP5, MP6, MP7
Lesson 10-2: Adjacent Angles	7.G.A.2, 7.G.B. 5	MP1, MP2, MP3, MP6, MP8
Lesson 10-3: Complementary Angles	7.EE.B.4a, 7.G.A.2, 7.G.B. 5	MP2, MP3, MP5, MP6, MP7
Lesson 10-4: Supplementary Angles	7.EE.B.4a, 7.G.A.2, 7.G.B. 5	MP2, MP3, MP5, MP6, MP7
Lesson 10-5: Vertical Angles	7.EE.B.4a, 7.G.A.2, 7.G.B. 5	MP2, MP3, MP4, MP6, MP8
Lesson 10-6: Problem Solving	7.EE.B.4a, 7.G.B. 5	MP2, MP3, MP6, MP7, MP8
Topic 11: Circles		
Lesson 11-1: Center, Radius, and Diameter	7.EE.B.4, 7.EE.B.4a, 7.G.A.2, 7.G.B. 4	MP1, MP2, MP6, MP7, MP8
Lesson 11-2: Circumference of a Circle	7.EE.B.4, 7.G.A.2, 7.G.B. 4	MP3, MP4, MP5, MP6, MP7
Lesson 11-3: Area of a Circle	7.EE.B.3, 7.EE.B.4, 7.G.A.2, 7.G.B. 4	MP2, MP4, MP6, MP7, MP8
Lesson 11-4: Relating Circumference and Area of a Circle	7.EE.B.3, 7.EE.B.4, 7.G.B. 4	MP1, MP3, MP6, MP7, MP8
Lesson 11-5: Problem Solving	7.EE.B.3, 7.EE.B.4, 7.G.B. 4	MP2, MP3, MP4, MP6, MP7
Topic 12: 2- and 3-Dimensional Shapes		
Lesson 12-1: Geometry Drawing Tools	7.G.A. 2	MP1, MP3, MP5, MP6, MP7
Lesson 12-2: Drawing Triangles with Given Conditions 1	7.G.A. 2	MP1, MP3, MP5, MP6, MP7
Lesson 12-3: Drawing Triangles with Given Conditions 2	7.G.A. 2	MP2, MP3, MP5, MP6, MP7
Lesson 12-4: 2-D Slices of Right Rectangular Prisms	7.G.A. 3	MP3, MP5, MP6, MP7, MP8
Lesson 12-5: 2-D Slices of Right Rectangular Pyramids	7.G.A. 3	MP2, MP3, MP5, MP6, MP7
Lesson 12-6: Problem Solving	7.EE.B.4, 7.G.A.2, 7.G.A.3, 7.G.B. 6	MP2, MP3, MP4, MP5, MP7
Topic 13: Surface Area and Volume		
Lesson 13-1: Surface Areas of Right Prisms	7.NS.A.3, 7.EE.B.3, 7.EE.B.4, 7.G.B. 6	MP2, MP4, MP5, MP6, MP7
Lesson 13-2: Volumes of Right Prisms	7.NS.A.3, 7.EE.B.3, 7.EE.B. 4 7.G.B. 6	MP2, MP3, MP4, MP7, MP8
Lesson 13-3: Surface Areas of Right Pyramids	7.NS.A.3, 7.EE.B.3, 7.EE.B.4, 7.G.B. 6	MP2, MP3, MP4, MP5, MP7
Lesson 13-4: Volumes of Right Pyramids	7.NS.A.3, 7.EE.B.3, 7.EE.B.4, 7.G.B. 6	MP2, MP4, MP5, MP6, MP8
Lesson 13-5: Problem Solving	7.NS.A.3, 7.EE.B.3, 7.EE.B. 4 7.G.B. 6	MP1, MP2, MP4, MP6, MP7

Standards of Mathematical Content

Standards of Mathematical Practice

Unit E: Statistics

Topic 14: Sampling

Lesson 14-1: Populations and Samples	7.SP.A. 1	MP3, MP4, MP7, MP8
Lesson 14-2: Estimating a Population	7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, 7.SP.A.1, 7.SP.A. 2	MP1, MP3, MP4, MP5, MP7
Lesson 14-3: Convenience Sampling	7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, 7.SP.A. 1	MP2, MP4, MP6, MP7, MP8
Lesson 14-4: Systematic Sampling	$\begin{gathered} \text { 7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, } \\ \text { 7.SP.A. } 1 \end{gathered}$	MP2, MP3, MP4, MP5, MP7
Lesson 14-5: Simple Random Sampling	7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, 7.SP.A.1, 7.SP.A. 2	MP2, MP4, MP5, MP7
Lesson 14-6: Comparing Sampling Methods	7.SP.A. 1	MP2, MP3, MP4, MP6, MP7
Lesson 14-7: Problem Solving	7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, 7.SP.A.1, 7.SP.A. 2	MP1, MP2, MP3, MP6
Topic 15: Comparing Two Populations		
Lesson 15-1: Statistical Measures	7.SP.A.1, 7.SP.B. 4	MP2, MP3, MP4, MP6, MP7
Lesson 15-2: Multiple Populations and Inferences	7.SP.A.1, 7.SP.B.3, 7.SP.B. 4	MP1, MP3, MP4, MP5, MP6
Lesson 15-3: Using Measures of Center	7.SP.B. 4	MP2, MP3, MP4, MP5, MP6
Lesson 15-4: Using Measures of Variability	7.SP.B. 4	MP2, MP3, MP4, MP5
Lesson 15-5: Exploring Overlap in Data Sets	7.SP.B.3, 7.SP.B. 4	MP2, MP3, MP4, MP6, MP7
Lesson 15-6: Problem Solving	7.SP.B. 4	MP1, MP2, MP3, MP4, MP6
Unit F: Probability		
Topic 16: Probability Concepts		
Lesson 16-1: Likelihood and Probability	7.EE.B.3, 7.SP.C.5, 7.SP.C. 6	MP1, MP3, MP4, MP5, MP6
Lesson 16-2: Sample Space	7.SP.C. 7	MP1, MP2, MP3, MP5, MP7
Lesson 16-3: Relative Frequency and Experimental Probability	7.EE.B.3, 7.SP.C. 6	MP2, MP4, MP5, MP7
Lesson 16-4: Theoretical Probability	7.EE.B.3, 7.EE.B.4, 7.SP.C.7a	MP2, MP3, MP4, MP6, MP7
Lesson 16-5: Probability Models	7.EE.B.3, 7.EE.B.4, 7.SP.C.7a, 7.SP.C.7b	MP3, MP4, MP6, MP7
Lesson 16-6: Problem Solving	7.EE.B.3, 7.EE.B.4, 7.SP.C.7a, 7.SP.C. 7 b	MP3, MP4, MP5, MP7, MP8
Topic 17: Compound Events		
Lesson 17-1: Compound Events	7.SP.C.8, 7.SP.C.8b	MP3, MP4, MP5, MP6, MP8
Lesson 17-2: Sample Spaces	7.SP.C.8, 7.SP.C.8b	MP4, MP5, MP6, MP7
Lesson 17-3: Counting Outcomes	7.SP.C.8, 7.SP.C.8a, 7.SP.C.8b	MP2, MP3, MP4, MP5
Lesson 17-4: Finding Theoretical Probabilities	$\begin{gathered} \text { 7.EE.B.3, 7.SP.C.6, 7.SP.C.8, } \\ \text { 7.SP.C.8a } \end{gathered}$	MP1, MP2, MP3, MP4, MP7
Lesson 17-5: Simulation With Random Numbers	7.SP.C.8, 7.SP.C.8c	MP2, MP4, MP5, MP6
Lesson 17-6: Finding Probabilities by Simulation	7.EE.B.3, 7.SP.C. 8	MP2, MP4, MP5, MP6, MP7
Lesson 17-7: Problem Solving	$\begin{gathered} \text { 7.RP.A.3, 7.EE.B.3, 7.SP.C.7, } \\ \text { 7.SP.C. } 8 \end{gathered}$	MP1, MP3, MP4, MP7, MP8

Grade 8 Standards Correlation

8.NS The Number System

Know that there are numbers that are not rational, and approximate them by rational numbers.
8.NS.A. $1 \quad$ Know that numbers that are not rational are called irrational. Understand $\quad 1-1,1-2$, informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.NS.A. 2

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.

1-5
1-3, 1-4, 1-5

8.EE Expressions and Equations

Work with radicals and integer exponents.

8.EE.A. 1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{(-5)}=3^{(-3)}=\frac{1}{\left(3^{3}\right)}=\frac{1}{27}$.	$\begin{aligned} & 3-3,3-4, \\ & 3-5,3-6, \\ & 3-7,4-5 \end{aligned}$
8.EE.A. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	$\begin{aligned} & 1-2,1-4 \\ & 1-5,3-1 \\ & 3-2,13-2 \\ & 13-4,13-5 \\ & 13-6,13-7 \end{aligned}$
8.EE.A. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.	$\begin{aligned} & 4-1,4-2, \\ & 4-3,4-4 \end{aligned}$
8.EE.A. 4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	$\begin{aligned} & 4-1,4-4, \\ & 4-5 \end{aligned}$
Understand the connections between proportional relationships, lines, and linear equations.		
8.EE.B. 5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	$\begin{aligned} & 5-1,5-2, \\ & 5-3,5-4, \\ & 5-7 \end{aligned}$
8.EE.B. 6	Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.	$\begin{aligned} & 5-2,5-5, \\ & 5-6,5-7, \\ & 10-3 \end{aligned}$

8.EE Expressions and Equations (continued)

Analyze and solve linear equations and pairs of simultaneous linear equations.

8.EE.C. 7	Solve linear equations in one variable.	$\begin{aligned} & 2-1,2-2, \\ & 2-4,2-5 \end{aligned}$
8.EE.C.7a	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).	2-4, 2-5
8.EE.C.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	$\begin{aligned} & 2-1,2-2, \\ & 2-3 \end{aligned}$
8.EE.C. 8	Analyze and solve pairs of simultaneous linear equations.	$\begin{aligned} & 6-1,6-2, \\ & 6-4,6-5, \\ & 6-6,6-7 \end{aligned}$
8.EE.C.8a	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	$\begin{aligned} & 6-1,6-3, \\ & 6-5,6-6 \end{aligned}$
8.EE.C.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .	$\begin{aligned} & 6-2,6-3, \\ & 6-4,6-5 \\ & 6-6,6-7 \end{aligned}$
8.EE.C.8c	Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	$\begin{aligned} & 6-1,6-3, \\ & 6-4,6-5, \\ & 6-6,6-7 \end{aligned}$

8.F Functions

Define, evaluate, and compare functions.

8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	$\begin{aligned} & 7-1,7-2, \\ & 7-4,8-1 \end{aligned}$
8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	8-4
8.F.A. 3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{2}$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.	$\begin{aligned} & 7-3,7-4, \\ & 8-1,8-3 \end{aligned}$

Grade 8 Standards Correlation continued

Number
Standard for Mathematical Content
Lesson(s)

8.F Functions (continued)

Use functions to model relationships between quantities.
8.F.B. $4 \quad$ Construct a function to model a linear relationship between two quantities.

8-1, 8-2,
Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function

8-3, 8-5,
8-6, 14-5, 14-6, 14-7 in terms of the situation it models, and in terms of its graph or a table of values.
8.F.B. 5

Describe qualitatively the functional relationship between two quantities by
7-3, 7-4, analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

7-5, 7-6,
7-7, 8-1,
8-2, 8-3,
14-5, 14-6,
14-7

8.G Geometry

8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations:	$\begin{aligned} & 9-1,9-2, \\ & 9-3,10-1 \end{aligned}$
8.G.A.1a	Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.	$\begin{aligned} & 9-1,9-2, \\ & 9-3 \end{aligned}$
8.G.A.1b	Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.	$\begin{aligned} & 9-1,9-2, \\ & 9-3 \end{aligned}$
8.G.A.1c	Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.	$\begin{aligned} & 9-1,9-2, \\ & 9-3 \end{aligned}$
8.G.A. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	9-4, 9-5
8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	$\begin{aligned} & 10-1,10-2, \\ & 10-3,10-4 \end{aligned}$
8.G.A. 4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	$\begin{aligned} & 10-2,10-3, \\ & 10-4,11-5 \end{aligned}$
8.G.A. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	$\begin{aligned} & \text { 11-1, } 11-2, \\ & 11-3,11-4, \\ & 11-5,11-6 \end{aligned}$

8.G Ceometry (continued)

Understand and apply the Pythagorean Theorem.

8.G.B. 6	Explain a proof of the Pythagorean Theorem and its converse.	$\begin{aligned} & 12-1,12-2, \\ & 12-4 \end{aligned}$
8.G.B. 7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.	$\begin{aligned} & 12-2,12-3, \\ & 12-6,13-7 \end{aligned}$
8.G.B. 8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	12-5, 12-6

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
8.G.C. $9 \quad$ Know the formulas for the volumes of cones, cylinders, and spheres and use $\quad 13-1,13-2$, them to solve real-world and mathematical problems. $13-3,13-4$, 13-5, 13-6, 13-7

8.SP Statistics and Probability

Investigate patterns of association in bivariate data.

8.SP.A. 1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	$\begin{aligned} & 14-1,14-2, \\ & 14-3,14-4 \end{aligned}$
8.SP.A. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	$\begin{aligned} & 14-5,14-6, \\ & 14-7 \end{aligned}$
8.SP.A. 3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.	14-6
8.SP.A. 4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.	$\begin{aligned} & 15-1,15-2, \\ & 15-3,15-4, \\ & 15-5,15-6, \\ & 15-7 \end{aligned}$

Grade 8 Lesson Correlation

	Standards of Mathematical Content	Standards of Mathematical Practice
Unit A: The Number System		
Topic 1: Rational and Irrational Numbers		
Lesson 1-1: Expressing Rational Numbers with Decimal Expansions	8.NS.A. 1	MP1, MP2, MP3, MP4, MP6
Lesson 1-2: Exploring Irrational Numbers	8.NS.A.1, 8.EE.A. 2	MP2, MP3, MP5, MP6, MP7
Lesson 1-3: Approximating Irrational Numbers	8.NS.A. 2	MP1, MP2, MP3, MP5, MP8
Lesson 1-4: Comparing and Ordering Rational and Irrational Numbers	8.NS.A.2, 8.EE.A. 2	MP2, MP3, MP5, MP6, MP7
Lesson 1-5: Problem Solving	8.NS.A.1, 8.NS.A.2, 8.EE.A. 2	MP2, MP3, MP4, MP7, MP8
Unit B: Expressions and Equations, Part 1		
Topic 2: Linear Equations in One Variable		
Lesson 2-1: Solving Two-Step Equations	8.EE.C.7, 8.EE.C.7b	MP1, MP2, MP4, MP6, MP7
Lesson 2-2: Solving Equations with Variables on Both Sides	8.EE.C.7, 8.EE.C.7b	MP4, MP5, MP6, MP8
Lesson 2-3: Solving Equations Using the Distributive Property	8.EE.C.7b	MP1, MP2, MP3, MP7
Lesson 2-4: Solutions - One, None, or Infinitely Many	8.EE.C.7, 8.EE.C.7a	MP2, MP3, MP6, MP7, MP8
Lesson 2-5: Problem Solving	8.EE.C.7, 8.EE.C.7a	MP1, MP2, MP4, MP6, MP8
Topic 3: Integer Exponents		
Lesson 3-1: Perfect Squares, Square Roots, and Equations of the form $x^{2}=p$	8.EE.A. 2	MP1, MP2, MP6, MP7, MP8
Lesson 3-2: Perfect Cubes, Cube Roots, and Equations of the form $x^{3}=p$	8.EE.A. 2	MP2, MP3, MP6, MP7, MP8
Lesson 3-3: Exponents and Multiplication	8.EE.A. 1	MP2, MP3, MP6, MP7
Lesson 3-4: Exponents and Division	8.EE.A. 1	MP1, MP2, MP3, MP6, MP7
Lesson 3-5: Zero and Negative Exponents	8.EE.A. 1	MP3, MP5, MP6, MP8
Lesson 3-6: Comparing Expressions with Exponents	8.EE.A. 1	MP2, MP3, MP6, MP7, MP8
Lesson 3-7: Problem Solving	8.EE.A. 1	MP2, MP3, MP4, MP6, MP7
Topic 4: Scientific Notation		
Lesson 4-1: Exploring Scientific Notation	8.EE.A.3, 8.EE.A. 4	MP2, MP3, MP5, MP7
Lesson 4-2: Using Scientific Notation to Describe Very Large Quantities	8.EE.A. 3	MP1, MP2, MP3, MP4, MP6
Lesson 4-3: Using Scientific Notation to Describe Very Small Quantities	8.EE.A. 3	MP1, MP2, MP4, MP6, MP7
Lesson 4-4: Operating with Numbers Expressed in Scientific Notation	8.EE.A.3, 8.EE.A. 4	MP1, MP4, MP6, MP7, MP8
Lesson 4-5: Problem Solving	8.EE.A.3, 8.EE.A. 4	MP1, MP2, MP3, MP4, MP7

	Standards of Mathematical Content	Standards of Mathematical Practice
Unit C: Expressions and Equations, Part 2		
Topic 5: Proportional Relationships, Lines, and Linear Equations		
Lesson 5-1: Graphing Proportional Relationships	8.EE.B. 5	MP2, MP4, MP5, MP6, MP8
Lesson 5-2: Linear Equations: $y=m x$	8.EE.B.5, 8.EE.B. 6	MP4, MP5, MP6, MP7, MP8
Lesson 5-3: The Slope of a Line	8.EE.B. 5	MP1, MP2, MP3, MP6
Lesson 5-4: Unit Rates and Slope	8.EE.B. 5	MP2, MP4, MP5, MP6, MP7
Lesson 5-5: The y-intercept of a Line	8.EE.B.6	MP1, MP3, MP5, MP6
Lesson 5-6: Linear Equations: $y=m x+b$	8.EE.B. 6	MP1, MP4, MP6, MP7
Lesson 5-7: Problem Solving	8.EE.B.5, 8.EE.B. 6	MP2, MP3, MP4, MP6, MP7
Topic 6: Systems of Two Linear Equations		
Lesson 6-1: What is a System of Linear Equations in Two Variables?	8.EE.C.8, 8.EE.C.8a, 8.EE.C.8c	MP1, MP2, MP4, MP5, MP7
Lesson 6-2: Estimating Solutions of Linear Systems by Inspection	8.EE.C.8, 8.EE.C.8b	MP2, MP3, MP4, MP6, MP7
Lesson 6-3: Solving Systems of Linear Equations by Graphing	$\begin{aligned} & \text { 8.EE.C.8a, 8.EE.C.8b, } \\ & \text { 8.EE.C.8c } \end{aligned}$	MP1, MP2, MP4, MP5, MP7
Lesson 6-4: Solving Systems of Linear Equations Using Substitution	8.EE.C.8, 8.EE.C.8b, 8.EE.C.8c	MP1, MP2, MP6, MP7
Lesson 6-5: Solving Systems of Linear Equations Using Addition	8.EE.C.8, 8.EE.C.8a, 8.EE.C.8b, 8.EE.C.8c	MP4, MP6, MP7, MP8
Lesson 6-6: Solving Systems of Linear Equations Using Subtraction	8.EE.C.8, 8.EE.C.8a, 8.EE.C.8b, 8.EE.C.8c	MP3, MP4, MP6, MP7
Lesson 6-7: Problem Solving	$\begin{aligned} & \text { 8.EE.C.8, 8.EE.C.8b, } \\ & \text { 8.EE.C.8c } \end{aligned}$	MP1, MP3, MP4, MP5, MP7
Topic D: Functions		
Topic 7: Defining and Comparing Functions		
Lesson 7-1: Recognizing a Function	8.F.A. 1	MP3, MP5, MP6, MP7
Lesson 7-2: Representing a Function	8.F.A. 1	MP2, MP4, MP5, MP6, MP8
Lesson 7-3: Linear Functions	8.F.A.3, 8.F.B. 5	MP2, MP4, MP5, MP7
Lesson 7-4: Nonlinear Functions	8.F.A.1, 8.F.A.3, 8.F.B. 5	MP2, MP3, MP6, MP7, MP8
Lesson 7-5: Increasing and Decreasing Intervals	8.F.B. 5	MP2, MP5, MP6, MP7
Lesson 7-6: Sketching a Function Graph	8.F.B. 5	MP1, MP3, MP4, MP5, MP7
Lesson 7-7: Problem Solving	8.F.B. 5	MP1, MP3, MP4, MP6, MP7
Topic 8: Linear Functions		
Lesson 8-1: Defining a Linear Function Rule	8.F.A.1, 8.F.A.3, 8.F.B.4, 8.F.B. 5	MP1, MP2, MP6, MP7
Lesson 8-2: Rate of Change	8.F.B.4, 8.F.B. 5	MP2, MP4, MP5, MP6, MP8
Lesson 8-3: Initial Value	8.F.A.3, 8.F.B.4, 8.F.B. 5	MP2, MP4, MP6, MP7, MP8
Lesson 8-4: Comparing Two Linear Functions	8.F.A. 2	MP2, MP3, MP5, MP7

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 8: Linear Functions (continued)		
Lesson 8-5: Constructing a Function to Model a Linear Relationship	8.F.B. 4	MP1, MP2, MP4, MP5, MP6
Lesson 8-6: Problem Solving	8.F.B. 4	MP2, MP4, MP5, MP6, MP7
Unit E: Geometry		
Topic 9: Congruence		
Lesson 9-1: Translations	8.G.A.1, 8.G.A.1a, 8.G.A.1b, 8.G.A.1c, 8.G.A. 3	MP2, MP4, MP5, MP6, MP7
Lesson 9-2: Reflections	8.G.A.1, 8.G.A.1a, 8.G.A.1b, 8.G.A.1c, 8.G.A. 3	MP2, MP3, MP5, MP6, MP7
Lesson 9-3: Rotations	8.G.A.1, 8.G.A.1a, 8.G.A.1b, 8.G.A.1c, 8.G.A. 3	MP2, MP3, MP4, MP5, MP7
Lesson 9-4: Congruent Figures	8.G.A. 2	MP1, MP3, MP5, MP6, MP8
Lesson 9-5: Problem Solving	8.G.A. 2	MP1, MP2, MP3, MP5, MP7
Topic 10: Similarity		
Lesson 10-1: Dilations	8.G.A.1, 8.G.A.1a, 8.G.A.1b, 8.G.A.1c, 8.G.A. 3	MP1, MP2, MP5, MP6, MP7
Lesson 10-2: Similar Figures	8.G.A.3, 8.G.A. 4	MP2, MP3, MP5, MP6, MP7
Lesson 10-3: Relating Similar Triangles and Slope	8.EE.B.6, 8.G.A.3, 8.G.A. 4	MP1, MP3, MP5, MP7, MP8
Lesson 10-4: Problem Solving	8.G.A.3, 8.G.A. 4	MP4, MP5, MP6, MP7, MP8
Topic 11: Reasoning in Geometry		
Lesson 11-1: Angles, Lines, and Transversals	8.G.A. 5	MP2, MP3, MP4, MP6, MP7
Lesson 11-2: Reasoning and Parallel Lines	8.G.A. 5	MP1, MP3, MP6, MP8
Lesson 11-3: Interior Angles of Triangles	8.G.A. 5	MP2, MP3, MP5, MP6
Lesson 11-4: Exterior Angles of Triangles	8.G.A. 5	MP2, MP5, MP6, MP7, MP8
Lesson 11-5: Angle-Angle Triangle Similarity	8.G.A.3, 8.G.A.4, 8.G.A. 5	MP1, MP2, MP3, MP5, MP6
Lesson 11-6: Problem Solving	8.G.A. 5	MP2, MP3, MP5, MP6, MP7
Topic 12: Using the Pythagorean Theorem		
Lesson 12-1: Reasoning and Proof	8.G.B. 6	MP3, MP5, MP6, MP7, MP8
Lesson 12-2: The Pythagorean Theorem	8.G.B.6, 8.G.B. 7	MP2, MP3, MP6, MP7, MP8
Lesson 12-3: Finding Unknown Leg Lengths	8.G.B. 7	MP2, MP3, MP4, MP6, MP7
Lesson 12-4: The Converse of the Pythagorean Theorem	8.G.B. 6	MP2, MP3, MP5, MP6, MP8
Lesson 12-5: Distance in the Coordinate Plane	8.G.B. 8	MP1, MP2, MP4, MP5, MP6
Lesson 12-6: Problem Solving	8.G.B.7, 8.G.B. 8	MP1, MP2, MP3, MP4, MP6
Topic 13: Surface Area and Volume		
Lesson 13-1: Surface Areas of Cylinders	8.G.C. 9	MP2, MP5, MP6, MP7
Lesson 13-2: Volumes of Cylinders	8.EE.A.2, 8.G.C. 9	MP2, MP3, MP5, MP6, MP7
Lesson 13-3: Surface Areas of Cones	8.G.C. 9	MP4, MP5, MP6, MP7

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 13: Surface Area and Volume (continued)		
Lesson 13-4: Volumes of Cones	8.EE.A.2, 8.G.C. 9	MP1, MP3, MP5, MP6
Lesson 13-5: Surface Areas of Spheres	8.EE.A.2, 8.G.C. 9	MP2, MP4, MP6, MP7, MP8
Lesson 13-6: Volumes of Spheres	8.EE.A.2, 8.G.C. 9	MP3, MP4, MP6, MP7
Lesson 13-7: Problem Solving	8.EE.A.2, 8.G.B.7, 8.G.C. 9	MP1, MP2, MP6, MP8
Topic F: Statistics		
Topic 14: Scatter Plots		
Lesson 14-1: Interpreting a Scatter Plot	8.SP.A. 1	MP1, MP4, MP5, MP7
Lesson 14-2: Constructing a Scatter Plot	8.SP.A. 1	MP2, MP4, MP5, MP6
Lesson 14-3: Investigating Patterns - Clustering and Outliers	8.SP.A. 1	MP4, MP6, MP7, MP8
Lesson 14-4: Investigating Patterns - Association	8.SP.A. 1	MP2, MP4, MP5, MP7, MP8
Lesson 14-5: Linear Models - Fitting a Straight Line	8.F.B.4, 8.SP.A. 2	MP2, MP5, MP7, MP8
Lesson 14-6: Using the Equation of a Linear Model	8.F.B.4, 8.SP.A.2, 8.SP.A. 3	MP3, MP4, MP5, MP7, MP8
Lesson 14-7: Problem Solving	8.F.B.4, 8.SP.A. 2	MP1, MP2, MP4, MP6, MP7
Topic 15: Analyzing Categorical Data		
Lesson 15-1: Bivariate Categorical Data	8.SP.A. 4	MP1, MP3, MP6, MP7
Lesson 15-2: Constructing Two-Way Frequency Tables	8.SP.A. 4	MP1, MP3, MP4, MP6, MP7
Lesson 15-3: Interpreting Two-Way Frequency Tables	8.SP.A. 4	MP2, MP4, MP6, MP7, MP8
Lesson 15-4: Constructing Two-Way Relative Frequency Tables	8.SP.A. 4	MP2, MP4, MP5, MP6, MP7
Lesson 15-5: Interpreting Two-Way Relative Frequency Tables	8.SP.A. 4	MP1, MP3, MP5, MP6, MP7
Lesson 15-6: Choosing a Measure of Frequency	8.SP.A. 4	MP1, MP2, MP4, MP5, MP8
Lesson 15-7: Problem Solving	8.SP.A. 4	MP2, MP4, MP5, MP6, MP7

digits Accelerated Grade 7

The CCSS begins developing students' algebraic thinking as early as Kindergarten. Some students are able to progress more quickly through their mathematics education. Students who have completed Grade 7 and mastered the content, skills, and understanding of the CCSSM through Grade 7 are prepared for an algebra class in Grade 8. However, students who do this will skip over many concepts in Grade 8 that will better prepare students for later mathematics courses.

The Achieve Pathways Group recommends that students not move directly from a Grade 7 math class to an algebra class, but instead be placed in an Accelerated Grade 7 math class that covers all of the Grade 7 standards in addition to specific Grade 8 standards. By compressing Grade 7 CCSS and some of Grade 8 CCSS standards into one class, students will go into their Algebra I course better prepared to succeed in both Algebra I and later mathematics courses.

The digits Accelerated Grade 7 course is designed for students who are ready to take Algebra 1 in the 8th grade. It follows the Appendix A (the Achieve Pathways) recommendation for an Accelerated Grade 7 course that covers all of Grade 7 standards along with Grade 8 CCSS 8.NS.A.1-2, 8.EE.A.1-4, 8.EE.B.5-6, 8.EE.C.7, 8.EE.C.7a, 8.EE.C.7b, 8.G.A.1-5, and 8.G.C.9. After completing the Accelerated Grade 7 course, students are prepared for either an Algebra 1 course or an Integrated Mathematics 1 course.

As this course features all of the Grade 7 content plus additional content from Grade 8, the pacing is by necessity faster. Careful consideration should be given to make sure students will be able to handle the quicker pace. An Algebra Readiness Test is available in digits that can help teachers determine which students are prepared for the challenges of the Accelerated Grade 7 course. The test is provided digitally and can be found with the other Diagnostic Assessments in the Progress Monitoring folder.

Accelerated Grade 7 Standards Correlation

Number
Standard for Mathematical Content
Lesson(s)
7.RP Ratios and Proportional Relationships

Analyze proportional relationships and use them to solve real-world and mathematical problems.

7.RP.A. 1	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.	$\begin{aligned} & 7-1,7-2, \\ & 7-3,7-4, \\ & 7-5 \end{aligned}$
7.RP.A. 2	Recognize and represent proportional relationships between quantities.	$\begin{aligned} & 8-1,8-2, \\ & 8-3,8-4, \\ & 8-6,9-1, \\ & 9-2,9-3, \\ & 9-5 \end{aligned}$
7.RP.A.2a	Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	$\begin{aligned} & 8-1,8-2, \\ & 8-6 \end{aligned}$
7.RP.A.2b	Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	$\begin{aligned} & 8-3,8-6, \\ & 9-1,15-2, \\ & 15-3,15-4, \\ & 15-5,15-7 \end{aligned}$
7.RP.A.2c	Represent proportional relationships by equations.	$\begin{aligned} & 8-4,8-6, \\ & 9-1 \end{aligned}$
7.RP.A.2d	Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where r is the unit rate.	$\begin{aligned} & 8-2,8-3, \\ & 8-6 \end{aligned}$
7.RP.A. 3	Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	$\begin{aligned} & 9-2,9-3, \\ & 9-5,9-6, \\ & 9-7,15-2 \\ & \text { thru 15-7, } \\ & 18-7 \end{aligned}$

7.NS The Number System

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
7.NS.A. 1
7.NS.A.1a

Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
7.NS.A.1b

Understand $p+q$ as the number located a distance $|q|$ from p, in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.
7.NS.A.1c

Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.

Understand subtraction of rational numbers as addin... $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.

1-1, 1-2,
1-4, 1-5

1-1

1-2, 1-3, 1-5, 1-7

1-4, 1-6, 1-7

Accelerated Grade 7 Standards Correlation continued

Number

Standard for Mathematical Content
Lesson(s)

7.NS The Number System (continued)

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.

7.NS.A. 2	Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.	$\begin{aligned} & 2-1,2-2, \\ & 2-3,2-4, \\ & 2-5 \end{aligned}$
7.NS.A.2a	Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.	2-1, 2-2

7.NS.A.2b

Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $\left(\frac{p}{q}\right)=\frac{(-p)}{q}=\frac{p}{(-q)}$. Interpret quotients of rational numbers by describing real-world contexts.
7.NS.A.2c

Apply properties of operations as strategies to multiply and divide rational numbers.
7.NS.A.2d
7.NS.A. 3

Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0 s or eventually repeats.

2-3, 2-4,
3-1, 3-2,
3-5
$2-1,2-5$

3-1, 3-2, 3-5

2-5, 3-3,
3-4, 3-5, Topic 22

7.EE Expressions and Equations

Use properties of operations to generate equivalent expressions.

7.EE.A. 1	Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.	$\begin{aligned} & 10-1 \text { thru } \\ & 10-5 \end{aligned}$
7.EE.A. 2	Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5% " is the same as "multiply by 1.05."	$\begin{aligned} & 10-1,10-2, \\ & 10-3,10-4, \\ & 10-5 \end{aligned}$

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
7.EE.B.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.
7.EE.B. 4

Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.

1-7, 2-6, 11-3, 11-4, 11-5

Topic 11, Topic 13, 19-1, Topic 20, 21-6, Topic 22

7.EE Expressions and Equations (continued)

Solve real-life and mathematical problems using numerical and algebraic expressions and equations.

7.EE.B.4a	Solve word problems leading to equations of the form $p x+q=r$ and $p(x+q)=r$, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach.	$\begin{aligned} & \text { Topic 11, } \\ & \text { 19-1, 19-3, } \\ & \text { 19-4, 19-5, } \\ & 19-6,20-1 \end{aligned}$
7.EE.B.4b	Solve word problems leading to inequalities of the form $p x+q>r$ or $p x+q<r$, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem.	$\begin{aligned} & 13-1,13-2, \\ & 13-3,13-4, \\ & 13-5 \end{aligned}$

7.G Geometry

Draw, construct, and describe geometrical figures and describe the relationships between them.

7.G.A. 1	Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	8-5, 8-6
7.G.A. 2	Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	$\begin{aligned} & \text { Topic 19, } \\ & 20-1,20-2, \\ & 20-3,21-1, \\ & 21-2,21-3, \\ & 21-6 \end{aligned}$
7.G.A. 3	Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	21-6

Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.

7.G.B. 4	Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle.	$\begin{aligned} & 20-1,20-2, \\ & 20-3,20-4, \\ & 20-5 \end{aligned}$
7.G.B. 5	Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	$\begin{aligned} & 19-2.19-3, \\ & 19-4,19-5, \\ & 19-6 \end{aligned}$
7.G.B. 6	Solve real-world and mathematical problems involving area, volume and surface area of two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	$\begin{aligned} & 21-6,22-1, \\ & 22-2,22-3, \\ & 22-4,22-5 \end{aligned}$

7.SP Statistics and Probability

Use random sampling to draw inferences about a population.

7.SP.A.1	Understand that statistics can be used to gain information about a population	$15-1,15-2$,
	by examining a sample of the population; generalizations about a population	$15-3,15-4$,
	from a sample are valid only if the sample is representative of that population.	$15-5,15-6$,
	Understand that random sampling tends to produce representative samples and	$15-7,16-1$,
	support valid inferences.	

Accelerated Grade 7 Standards Correlation continued

Number

Standard for Mathematical Content
Lesson(s)

7.SP Statistics and Probability (continued)

Use random sampling to draw inferences about a population.
7.SP.A. $2 \quad$ Use data from a random sample to draw inferences about a population with 15-2, 15-5, an unknown characteristic of interest. Generate multiple samples (or simulated 15-7 samples) of the same size to gauge the variation in estimates or predictions.

Draw informal comparative inferences about two populations.
7.SP.B.3 Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability.
7.SP.B.4 Use measures of center and measures of variability for numerical data from

16-1, 16-2, random samples to draw informal comparative inferences about two populations.

Investigate chance processes and develop, use, and evaluate probability models.

7.SP.C. 5	Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $\frac{1}{2}$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.	17-1
7.SP.C. 6	Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability.	$\begin{aligned} & 17-1,17-2, \\ & 17-4 \end{aligned}$
7.SP.C. 7	Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.	$\begin{aligned} & 17-2,17-4, \\ & 17-5,17-6, \\ & 18-7 \end{aligned}$
7.SP.C.7a	Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events.	$\begin{aligned} & 17-4,17-5, \\ & 17-6 \end{aligned}$
7.SP.C.7b	Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process.	17-5, 17-6
7.SP.C. 8	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.	Topic 18
7.SP.C.8a	Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	18-3, 18-4
7.SP.C.8b	Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., "rolling double sixes"), identify the outcomes in the sample space which compose the event.	$\begin{aligned} & 18-1,18-2, \\ & 18-3 \end{aligned}$
7.SP.C.8c	Design and use a simulation to generate frequencies for compound events. For example, use random digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A blood, what is the probability that it will take at least 4 donors to find one with type A blood?	18-5

8.NS The Number System

Know that there are numbers that are not rational, and approximate them by rational numbers.
8.NS.A. 1

Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.
8.NS.A. 2

Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^{2}). For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2 , then between 1.4 and 1.5, and explain how to continue on to get better approximations.

4-1, 4-2, 4-5

4-3, 4-4, 4-5

8.EE Expressions and Equations

Work with radicals and integer exponents.

8.EE.A. 1	Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^{2} \times 3^{(-5)}=3^{(-3)}=\frac{1}{\left(3^{3}\right)}=\frac{1}{27}$.	$\begin{aligned} & 5-3 \text { thru } \\ & 5-7,6-5 \end{aligned}$
8.EE.A. 2	Use square root and cube root symbols to represent solutions to equations of the form $x^{2}=p$ and $x^{3}=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	$\begin{aligned} & 4-2,4-4, \\ & 4-5,5-1 \\ & 5-2,26-2, \\ & 26-4,26-5, \\ & 26-6,26-7 \end{aligned}$
8.EE.A. 3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^{8} and the population of the world as 7×10^{9}, and determine that the world population is more than 20 times larger.	$\begin{aligned} & 6-1,6-2, \\ & 6-3,6-4 \end{aligned}$
8.EE.A. 4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	$\begin{aligned} & 6-1,6-4, \\ & 6-5 \end{aligned}$

Understand the connections between proportional relationships, lines, and linear equations.
8.EE.B.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in

14-1, 14-2, 14-3, 14-4, 14-7 equation to determine which of two moving objects has greater speed.
8.EE.B. 6

14-2, 14-5, 14-6, 14-7

Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.

Accelerated Grade 7 Standards Correlation continued

Number

Standard for Mathematical Content
Lesson(s)

8.EE Expressions and Equations (continued)

Analyze and solve linear equations and pairs of simultaneous linear equations.

8.EE.C. 7	Solve linear equations in one variable.	$\begin{aligned} & 12-1,12-2, \\ & 12-4,12-5 \end{aligned}$
8.EE.C.7a	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x=a, a=a$, or $a=b$ results (where a and b are different numbers).	12-4, 12-5
8.EE.C.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	$\begin{aligned} & 12-1,12-2, \\ & 12-3 \end{aligned}$

8.G Geometry

Understand congruence and similarity using physical models, transparencies, or geometry software.

8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations:	$\begin{aligned} & 23-1,23-2, \\ & 23-3,24-1 \end{aligned}$
8.G.A.1a	Verify experimentally the properties of rotations, reflections, and translations: Lines are taken to lines, and line segments to line segments of the same length.	$\begin{aligned} & 23-1,23-2, \\ & 23-3 \end{aligned}$
8.G.A.1b	Verify experimentally the properties of rotations, reflections, and translations: Angles are taken to angles of the same measure.	$\begin{aligned} & \text { 23-1, 23-2, } \\ & 23-3 \end{aligned}$
8.G.A.1c	Verify experimentally the properties of rotations, reflections, and translations: Parallel lines are taken to parallel lines.	$\begin{aligned} & 23-1,23-2, \\ & 23-3 \end{aligned}$
8.G.A. 2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	23-4, 23-5
8.G.A. 3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	$\begin{aligned} & 24-1,24-2, \\ & 24-3,24-4 \end{aligned}$
8.G.A. 4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	$\begin{aligned} & 24-2,24-3, \\ & 24-4,24-5 \end{aligned}$
8.G.A. 5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	$\begin{aligned} & 25-1,25-2, \\ & 25-3,25-4, \\ & 25-5,25-6 \end{aligned}$

Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

8.G.C.9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.	Topic 26

Accelerated Grade 7 Lesson Correlation

	Standards of Mathematical Content	Standards of Mathematical Practice
Unit I: Rational Numbers and Exponents		
Topic 1: Adding and Subtracting Rational Numbers		
Lesson 1-1: Rational Numbers, Opposites, and Absolute Value	7.NS.A.1, 7.NS.A.1a	MP2, MP3, MP5, MP6, MP7
Lesson 1-2: Adding Integers	7.NS.A.1, 7.NS.A.1b	MP2, MP4, MP5, MP6, MP7
Lesson 1-3: Adding Rational Numbers	7.NS.A.1b, 7.NS.A.1d	MP1, MP2, MP4, MP5, MP6
Lesson 1-4: Subtracting Integers	7.NS.A.1, 7.NS.A.1c	MP2, MP4, MP5, MP6, MP7
Lesson 1-5: Subtracting Rational Numbers	7.NS.A.1, 7.NS.A.1b, 7.NS.A.1c, 7.NA.A.1d	MP1, MP2, MP5, MP6
Lesson 1-6: Distance on a Number Line	7.NS.A.1c	MP2, MP4, MP5, MP6, MP8
Lesson 1-7: Problem Solving	7.NS.A.1, 7.NS.A.1b, 7.NS.A.1c, 7.NS.A.1d, 7.EE.B. 3	MP1, MP2, MP4, MP5, MP6
Topic 2: Multiplying and Dividing Rational Numbers		
Lesson 2-1: Multiplying Integers	7.NS.A.2, 7.NS.A.2a, 7.NS.A.2c	MP2, MP3, MP4, MP5, MP7
Lesson 2-2: Multiplying Rational Numbers	7.NS.A.2, 7.NS.A.2a	MP1, MP2, MP3, MP6, MP8
Lesson 2-3: Dividing Integers	7.NS.A.2, 7.NS.A.2b	MP2, MP3, MP4, MP8
Lesson 2-4: Dividing Rational Numbers	7.NS.A.2, 7.NS.A.2b	MP2, MP3, MP6, MP7
Lesson 2-5: Operations with Rational Numbers	7.NS.A.2, 7.NS.A.2c, 7.NS.A. 3	MP2, MP4, MP6, MP7
Lesson 2-6: Problem Solving	7.NS.A.3, 7.EE.B. 3	MP3, MP4, MP5, MP6, MP7
Topic 3: Decimals and Percents		
Lesson 3-1: Repeating Decimals	7.NS.A.2b, 7.NS.A.2d	MP2, MP3, MP4, MP6
Lesson 3-2: Terminating Decimals	7.NS.A.2b, 7.NS.A.2d	MP2, MP3, MP6, MP8
Lesson 3-3: Percents Greater Than 100	7.NS.A. 3	MP2, MP3, MP4, MP6, MP7
Lesson 3-4: Percents Less Than 1	7.NS.A. 3	MP2, MP3, MP4, MP6, MP7
Lesson 3-5: Fractions, Decimals, and Percents	$\begin{gathered} \text { 7.NS.A.2b, 7.NS.A.2d, } \\ \text { 7.NS.A. } 3 \end{gathered}$	MP1, MP2, MP3, MP4, MP5
Lesson 3-6: Percent Error	7.RP.A. 3	MP2, MP3, MP4, MP5, MP7
Lesson 3-7: Problem Solving	7.NS.A. 3	MP1, MP3, MP4, MP6, MP8
Topic 4: Rational and Irrational Numbers		
Lesson 4-1: Expressing Rational Numbers with Decimal Expansions	8.NS.A. 1	MP1, MP2, MP3, MP4, MP6
Lesson 4-2: Exploring Irrational Numbers	8.NS.A.1, 8.EE.A. 2	MP2, MP3, MP5, MP6, MP7
Lesson 4-3: Approximating Irrational Numbers	8.NS.A. 2	MP1, MP2, MP3, MP5, MP8
Lesson 4-4: Comparing and Ordering Rational and Irrational Numbers	8.NS.A.2, 8.EE.A. 2	MP2, MP3, MP5, MP6, MP7
Lesson 4-5: Problem Solving	8.NS.A.1, 8.NS.A.2, 8.EE.A. 2	MP2, MP3, MP4, MP7, MP8

Accelerated Grade 7 Lesson Correlation continued

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 5: Integer Exponents		
Lesson 5-1: Perfect Squares, Square Roots, and Equations of the form $x^{2}=p$	8.EE.A. 2	MP1, MP2, MP6, MP7, MP8
Lesson 5-2: Perfect Cubes, Cube Roots, and Equations of the form $x^{3}=p$	8.EE.A. 2	MP2, MP3, MP6, MP7, MP8
Lesson 5-3: Exponents and Multiplication	8.EE.A. 1	MP2, MP3, MP6, MP7
Lesson 5-4: Exponents and Division	8.EE.A. 1	MP1, MP2, MP3, MP6, MP7
Lesson 5-5: Zero and Negative Exponents	8.EE.A. 1	MP3, MP5, MP6, MP8
Lesson 5-6: Comparing Expressions with Exponents	8.EE.A. 1	MP2, MP3, MP6, MP7, MP8
Lesson 5-7: Problem Solving	8.EE.A. 1	MP2, MP3, MP4, MP6, MP7
Topic 6: Scientific Notation		
Lesson 6-1: Exploring Scientific Notation	8.EE.A.3, 8.EE.A. 4	MP1, MP2, MP3, MP5, MP7
Lesson 6-2: Using Scientific Notation to Describe Very Large Quantities	8.EE.A. 3	MP1, MP2, MP3, MP4, MP6
Lesson 6-3: Using Scientific Notation to Describe Very Small Quantities	8.EE.A. 3	MP2, MP4, MP6, MP7
Lesson 6-4: Operating with Numbers Expressed in Scientific Notation	8.EE.A.3, 8.EE.A. 4	MP1, MP4, MP6, MP7, MP8
Lesson 6-5: Problem Solving	8.EE.A.3, 8.EE.A. 4	MP1, MP2, MP3, MP4, MP7
Unit II: Proportionality and Linear Relationships		
Topic 7: Ratios and Rates		
Lesson 7-1: Equivalent Ratios	7.RP.A. 1	MP1, MP2, MP4, MP6, MP8
Lesson 7-2: Unit Rates	7.RP.A. 1	MP1, MP4, MP5, MP8
Lesson 7-3: Ratios With Fractions	7.RP.A. 1	MP2, MP6, MP7, MP8
Lesson 7-4: Unit Rates With Fractions	7.RP.A. 1	MP1, MP2, MP3, MP4
Lesson 7-5: Problem Solving	7.RP.A. 1	MP1, MP2, MP3, MP4, MP7
Topic 8: Proportional Relationships		
Lesson 8-1: Proportional Relationships and Tables	7.RP.A.2, 7.RP.A.2a	MP2, MP4, MP5, MP6, MP7
Lesson 8-2: Proportional Relationships and Graphs	7.RP.A.2a, 7.RP.A.2d	MP2, MP4, MP5, MP6, MP7
Lesson 8-3: Constant of Proportionality	7.RP.A.2, 7.RP.A.2b, 7.RP.A.2d	MP1, MP2, MP4, MP5, MP8
Lesson 8-4: Proportional Relationships and Equations	7.RP.A.2, 7.RP.A.2b, 7.RP.A.2c	MP1, MP2, MP4, MP6
Lesson 8-5: Maps and Scale Drawings	7.G.A. 1	MP2, MP3, MP4, MP5, MP7
Lesson 8-6: Problem Solving	$\begin{aligned} & \text { 7.RP.A.2, 7.RP.A.2a, 7.RP.A.2b, } \\ & \text { 7.RP.A.2c, 7.RP.A.2d, 7.G.A. } 1 \end{aligned}$	MP2, MP3, MP4, MP6, MP8

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 9: Percents		
Lesson 9-1: The Percent Equation	7.RP.A.2, 7.RP.A.2b, 7.RP.A.2c	MP1, MP2, MP3, MP6, MP7
Lesson 9-2: Using the Percent Equation	7.RP.A.2, 7.RP.A. 3	MP1, MP3, MP4, MP6, MP7
Lesson 9-3: Simple Interest	7.RP.A.2, 7.RP.A. 3	MP4, MP5, MP7, MP8
Lesson 9-4: Compound Interest	7.NS.A. 3	MP4, MP5, MP7, MP8
Lesson 9-5: Percent Increase and Decrease	7.RP.A.2, 7.RP.A. 3	MP2, MP3, MP4, MP7
Lesson 9-6: Markups and Markdowns	7.RP.A. 3	MP1, MP2, MP5, MP7, MP8
Lesson 9-7: Problem Solving	7.RP.A. 3	MP1, MP3, MP4, MP6, MP7
Topic 10: Equivalent Expressions		
Lesson 10-1: Expanding Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP2, MP3, MP4, MP7, MP8
Lesson 10-2: Factoring Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP2, MP3, MP6, MP7, MP8
Lesson 10-3: Adding Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP2, MP4, MP6, MP7
Lesson 10-4: Subtracting Algebraic Expressions	7.EE.A.1, 7.EE.A. 2	MP1, MP2, MP6, MP7, MP8
Lesson 10-5: Problem Solving	7.EE.A.1, 7.EE.A. 2	MP1, MP2, MP4, MP5, MP7
Topic 11: Equations		
Lesson 11-1: Solving Simple Equations	7.EE.B.4, 7.EE.B.4a	MP2, MP5, MP6, MP7, MP8
Lesson 11-2: Writing Two-Step Equations	7.EE.B.4, 7.EE.B.4a	MP1, MP2, MP4, MP6, MP8
Lesson 11-3: Solving Two-Step Equations	7.EE.B.3, 7.EE.B.4, 7.EE.B.4a	MP1, MP3, MP4, MP5, MP8
Lesson 11-4: Solving Equations Using the Distributive Property	7.EE.B.3, 7.EE.B.4, 7.EE.B.4a	MP1, MP2, MP4, MP6, MP7
Lesson 11-5: Problem Solving	7.EE.B.3, 7.EE.B.4, 7.EE.B.4a	MP2, MP4, MP5, MP6, MP7
Topic 12: Linear Equations in One Variable		
Lesson 12-1: Solving Two-Step Equations	8.EE.C.7, 8.EE.C.7b	MP1, MP2, MP4, MP6, MP7
Lesson 12-2: Solving Equations with Variables on Both Sides	8.EE.C.7, 8.EE.C.7b	MP4, MP5, MP6, MP8
Lesson 12-3: Solving Equations Using the Distributive Property	8.EE.C.7b	MP1, MP2, MP3, MP7
Lesson 12-4: Solutions - One, None, or Infinitely Many	8.EE.C.7, 8.EE.C.7a	MP2, MP3, MP6, MP7, MP8
Lesson 12-5: Problem Solving	8.EE.C.7, 8.EE.C.7a	MP1, MP2, MP4, MP6, MP8

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 13: Inequalities		
Lesson 13-1: Solving Inequalities Using Addition or Subtraction	7.EE.B.4, 7.EE.B.4b	MP1, MP2, MP3, MP4, MP5
Lesson 13-2: Solving Inequalities Using Multiplication or Division	7.EE.B.4, 7.EE.B.4b	MP1, MP2, MP5, MP7, MP8
Lesson 13-3: Solving Two-Step Inequalities	7.EE.B.4, 7.EE.B.4b	MP1, MP3, MP4, MP6, MP7
Lesson 13-4: Solving Multi-Step Inequalities	7.EE.B.4, 7.EE.B.4b	MP1, MP3, MP4, MP6, MP8
Lesson 13-5: Problem Solving	7.EE.B.4, 7.EE.B.4b	MP2, MP3, MP4, MP6, MP8
Topic 14: Proportional Relationships, Lines, and Linear Equations		
Lesson 14-1: Graphing Proportional Relationships	8.EE.B. 5	MP2, MP4, MP5, MP6, MP8
Lesson 14-2: Linear Equations: $y=m x$	8.EE.B.5, 8.EE.B. 6	MP4, MP5, MP6, MP7, MP8
Lesson 14-3: The Slope of a Line	8.EE.B. 5	MP1, MP2, MP3, MP6
Lesson 14-4: Unit Rates and Slope	8.EE.B. 5	MP2, MP4, MP5, MP6, MP7
Lesson 14-5: The y-intercept of a Line	8.EE.B.6	MP1, MP3, MP5, MP6
Lesson 14-6: Linear Equations: $y=m x+b$	8.EE.B.6	MP1, MP4, MP6, MP7
Lesson 14-7: Problem Solving	8.EE.B.5, 8.EE.B. 6	MP2, MP3, MP4, MP6, MP7
Unit III: Introduction to Sampling and Inference		
Topic 15: Sampling		
Lesson 15-1: Populations and Samples	7.SP.A. 1	MP3, MP4, MP7, MP8
Lesson 15-2: Estimating a Population	7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, 7.SP.A.1, 7.SP.A. 2	MP1, MP3, MP4, MP5, MP7
Lesson 15-3: Convenience Sampling	$\begin{gathered} \text { 7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, } \\ \text { 7.SP.A. } 1 \end{gathered}$	MP2, MP4, MP6, MP7, MP8
Lesson 15-4: Systematic Sampling	$\begin{gathered} \text { 7.RP.A. } 2 \mathrm{~b}, \begin{array}{l} \text { 7.RP.A. } 3, ~ 7 . E E . B .3, ~ \\ \text { 7.SP.A. } 1 \end{array} \end{gathered}$	MP2, MP3, MP4, MP5, MP7
Lesson 15-5: Simple Random Sampling	7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, 7.SP.A.1, 7.SP.A. 2	MP2, MP4, MP5, MP7
Lesson 15-6: Comparing Sampling Methods	7.SP.A. 1	MP2, MP3, MP4, MP6, MP7
Lesson 15-7: Problem Solving	$\begin{gathered} \text { 7.RP.A.2b, 7.RP.A.3, 7.EE.B.3, } \\ \text { 7.SP.A.1, 7.SP.A. } 2 \end{gathered}$	MP2, MP3, MP6
Topic 16: Comparing Two Populations		
Lesson 16-1: Statistical Measures	7.SP.A.1, 7.SP.B. 4	MP2, MP3, MP4, MP6, MP7
Lesson 16-2: Multiple Populations and Inferences	7.SP.A.1, 7.SP.B.3, 7.SP.B. 4	MP1, MP3, MP4, MP5, MP6
Lesson 16-3: Using Measures of Center	7.SP.B. 4	MP2, MP3, MP4, MP5, MP6
Lesson 16-4: Using Measures of Variability	7.SP.B. 4	MP2, MP3, MP4, MP5
Lesson 16-5: Exploring Overlap in Data Sets	7.SP.B.3, 7.SP.B. 4	MP2, MP3, MP4, MP6, MP7
Lesson 16-6: Problem Solving	7.SP.B. 4	MP1, MP2, MP3, MP4, MP6

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 17: Probability Concepts		
Lesson 17-1: Likelihood and Probability	7.EE.B.3, 7.SP.C.5, 7.SP.C. 6	MP1, MP3, MP4, MP5, MP6
Lesson 17-2: Sample Space	7.SP.C. 7	MP1, MP2, MP3, MP5, MP7
Lesson 17-3: Relative Frequency and Experimental Probability	7.EE.B.3, 7.SP.C. 6	MP2, MP4, MP5, MP7
Lesson 17-4: Theoretical Probability	7.EE.B.3, 7.EE.B.4, 7.SP.C.7a	MP2, MP3, MP4, MP6, MP7
Lesson 17-5: Probability Models	$\begin{aligned} & \text { 7.EE.B.3, 7.EE.B. } 4 \text { 7.SP.C.7a, } \\ & \text { 7.SP.C.7b } \end{aligned}$	MP3, MP4, MP6, MP7
Lesson 17-6: Problem Solving	7.EE.B.3, 7.EE.B. 4 7.SP.C.7a, 7.SP.C.7b	MP3, MP4, MP5, MP7, MP8
Topic 18: Compound Events		
Lesson 18-1: Compound Events	7.SP.C.8, 7.SP.C.8b	MP3, MP4, MP5, MP6, MP8
Lesson 18-2: Sample Spaces	7.SP.C.8, 7.SP.C.8b	MP4, MP5, MP6, MP7
Lesson 18-3: Counting Outcomes	7.SP.C.8, 7.SP.C.8a, 7.SP.C.8b	MP2, MP3, MP4, MP5
Lesson 18-4: Finding Theoretical Probabilities	7.EE.B.3, 7.SP.C.6, 7.SP.C.8, 7.SP.C.8a	MP1, MP2, MP3, MP4, MP7
Lesson 18-5: Simulation With Random Numbers	7.SP.C.8, 7.SP.C.8c	MP2, MP4, MP5, MP6
Lesson 18-6: Finding Probabilities by Simulation	7.EE.B.3, 7.SP.C. 8	MP2, MP4, MP5, MP6, MP7
Lesson 18-7: Problem Solving	$\begin{gathered} \text { 7.RP.A.3, 7.EE.B.3, 7.SP.C.7, } \\ \text { 7.SP.C. } 8 \end{gathered}$	MP1, MP3, MP4, MP7, MP8
Unit IV: Creating, Comparing, and Analyzing Geometric Figures		
Topic 19: Angles		
Lesson 19-1: Measuring Angles	7.EE.B.4, 7.EE.B.4a, 7.G.A. 2	MP1, MP3, MP5, MP6, MP7
Lesson 19-2: Adjacent Angles	7.G.A.2, 7.G.B. 5	MP1, MP2, MP3, MP6, MP8
Lesson 19-3: Complementary Angles	7.EE.B.4a, 7.G.A.2, 7.G.B. 5	MP2, MP3, MP5, MP6, MP7
Lesson 19-4: Supplementary Angles	7.EE.B.4a, 7.G.A.2, 7.G.B. 5	MP2, MP3, MP5, MP6, MP7
Lesson 19-5: Vertical Angles	7.EE.B.4a, 7.G.A.2, 7.G.B. 5	MP2, MP3, MP4, MP6, MP8
Lesson 19-6: Problem Solving	7.EE.B.4a, 7.G.B. 5	MP2, MP3, MP6, MP7, MP8
Topic 20: Circles		
Lesson 20-1: Center, Radius, and Diameter	$\begin{gathered} \text { 7.EE.B.4, 7.EE.B.4a, 7.G.A.2, } \\ \text { 7.G.B. } 4 \end{gathered}$	MP1, MP2, MP6, MP7, MP8
Lesson 20-2: Circumference of a Circle	7.EE.B.4, 7.G.A.2, 7.G.B. 4	MP3, MP4, MP5, MP6, MP7
Lesson 20-3: Area of a Circle	$\begin{gathered} \text { 7.EE.B.3, 7.EE.B.4, 7.G.A.2, } \\ \text { 7.G.B.4, } \end{gathered}$	MP2, MP4, MP6, MP7, MP8
Lesson 20-4: Relating Circumference and Area of a Circle	7.EE.B.3, 7.EE.B.4, 7.G.B. 4	MP1, MP3, MP6, MP7, MP8
Lesson 20-5: Problem Solving	7.EE.B.3, 7.EE.B.4, 7.G.B. 4	MP2, MP3, MP4, MP6, MP7

Accelerated Grade 7 Lesson Correlation continued

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 21: 2-and 3-Dimensional Shapes		
Lesson 21-1: Geometry Drawing Tools	7.G.A. 2	MP1, MP3, MP5, MP6, MP7
Lesson 21-2: Drawing Triangles with Given Conditions 1	7.G.A. 2	MP1, MP3, MP5, MP6, MP7
Lesson 21-3: Drawing Triangles with Given Conditions 2	7.G.A. 2	MP2, MP3, MP5, MP6, MP7
Lesson 21-4: 2-D Slices of Rectangular Prisms	7.G.A. 3	MP3, MP5, MP6, MP7, MP8
Lesson 21-5: 2-D Slices of Right Rectangular Pyramids	7.G.A. 3	MP2, MP3, MP5, MP6, MP7
Lesson 21-6: Problem Solving	7.EE.B.4, 7.G.A.2, 7.G.A.3, 7.G.B. 6	MP2, MP3, MP4, MP5, MP7
Topic 22: Surface Area and Volume		
Lesson 22-1: Surface Areas of Right Prisms	7.NS.A.3, 7.EE.B.3, 7.EE.B.4, 7.G.B. 6	MP2, MP4, MP5, MP6, MP7
Lesson 22-2: Volumes of Right Prisms	7.NS.A.3, 7.EE.B.3, 7.EE.B.4 7.G.B. 6	MP2, MP3, MP4, MP7, MP8
Lesson 22-3: Surface Areas of Right Pyramids	7.NS.A.3, 7.EE.B.3, 7.EE.B.4, 7.G.B. 6	MP2, MP3, MP4, MP5, MP7
Lesson 22-4: Volumes of Right Pyramids	7.NS.A.3, 7.EE.B.3, 7.EE.B.4, 7.G.B. 6	MP2, MP4, MP5, MP6, MP8
Lesson 22-5: Problem Solving	$\begin{gathered} \text { 7.NS.A.3, 7.EE.B.3, 7.EE.B.4, } \\ \text { 7.G.B. } 6 \end{gathered}$	MP1, MP2, MP4, MP6, MP7
Topic 23: Congruence		
Lesson 23-1: Translations	8.G.A.1, 8.G.A.1a, 8.G.A.1b, 8.G.A.1c, 8.G.A. 3	MP2, MP4, MP5, MP6, MP7
Lesson 23-2: Reflections	$\text { 8.G.A.1, 8.G.A.1a, 8.G.A. } 1 \mathrm{~b} \text {, }$ 8.G.A.1c, 8.G.A. 3	MP2, MP3, MP5, MP6, MP7
Lesson 23-3: Rotations	$\begin{aligned} & \text { 8.G.A.1, 8.G.A.1a, 8.G.A.1b, } \\ & \text { 8.G.A.1c, 8.G.A.3 } \end{aligned}$	MP2, MP3, MP4, MP5, MP7
Lesson 23-4: Congruent Figures	8.G.A. 2	MP1, MP3, MP5, MP6, MP8
Lesson 23-5: Problem Solving	8.G.A. 2	MP1, MP2, MP3, MP5, MP7
Topic 24: Similarity		
Lesson 24-1: Dilations	$\begin{aligned} & \text { 8.G.A.1, 8.G.A.1a, 8.G.A.1b, } \\ & \text { 8.G.A.c, 8.G.A. } \end{aligned}$	MP1, MP2, MP5, MP6, MP7
Lesson 24-2: Similar Figures	8.G.A.3, 8.G.A. 4	MP2, MP3, MP5, MP6, MP7
Lesson 24-3: Relating Similar Triangles and Slope	8.EE.B.6, 8.G.A.3, 8.G.A. 4	MP1, MP3, MP5, MP7, MP8
Lesson 24-4: Problem Solving	8.G.A.3, 8.G.A. 4	MP4, MP5, MP6, MP7, MP8

	Standards of Mathematical Content	Standards of Mathematical Practice
Topic 25: Reasoning in Geometry		
Lesson 25-1: Angles, Lines, and Transversals	8.G.A. 5	MP2, MP3, MP4, MP6, MP7
Lesson 25-2: Reasoning and Parallel Lines	8.G.A. 5	MP1, MP3, MP6, MP8
Lesson 25-3: Interior Angles of Triangles	8.G.A. 5	MP2, MP3, MP5, MP6
Lesson 25-4: Exterior Angles of Triangles	8.G.A. 5	MP2, MP5, MP6, MP7, MP8
Lesson 25-5: Angle-Angle Triangle Similarity	8.G.A.3, 8.G.A.4, 8.G.A. 5	MP1, MP2, MP3, MP5, MP6
Lesson 25-6: Problem Solving	8.G.A. 5	MP2, MP3, MP5, MP6, MP7
Topic 26: Surface Area and Volume		
Lesson 26-1: Surface Areas of Cylinders	8.G.C. 9	MP2, MP5, MP6, MP7
Lesson 26-2: Volumes of Cylinders	8.EE.A.2, 8.G.C. 9	MP2, MP3, MP5, MP6, MP7
Lesson 26-3: Surface Areas of Cones	8.G.C. 9	MP4, MP5, MP6, MP7
Lesson 26-4: Volumes of Cones	8.EE.A.2, 8.G.C. 9	MP1, MP3, MP5, MP6
Lesson 26-5: Surface Areas of Spheres	8.EE.A.2, 8.G.C.9	MP2, MP4, MP6, MP7, MP8
Lesson 26-6: Volumes of Spheres	8.EE.A.2, 8.G.C. 9	MP3, MP4, MP6, MP7
Lesson 26-7: Problem Solving	8.EE.A.2, 8.G.B.7, 8.G.C. 9	MP1, MP2, MP6, MP8

Intervention Scope and Sequence

	Prerequisite for Units	CCSSM	MP
Intervention Lessons			
Cluster 7: Adding and Subtracting Decimals			
Lesson 1: Estimating Sums and Differences of Decimals	6C, 6F	5.NBT.B. 7	MP2, MP4, MP7, MP8
Lesson 2: Adding and Subtracting Decimals	$6 \mathrm{C}, 6 \mathrm{~F}$	5.NBT.B. 7	MP2, MP4, MP6
Cluster 8: Multiplying and Dividing Decimals			
Lesson 1: Patterns in Multiplying and Dividing Decimals	7A, 8F	5.NBT.A. 2	MP5, MP6, MP8
Lesson 2: Multiplying Decimals	6D, 6E, 7B, 7D, 7E, 7F, 8E, 8F	5.NBT.B. 7	MP4, MP6, MP7
Lesson 3: Dividing Decimals by Whole Numbers	$\begin{gathered} 6 C, 6 D, 6 F, 7 B, \\ 7 E, 8 F \end{gathered}$	5.NBT.B. 7	MP4, MP5, MP6, MP8
Lesson 4: Estimating Decimal Products and Quotients	6D	5.NBT.B.7, 7.EE.B. 3	MP2, MP4, MP7
Lesson 5: Dividing Decimals	7A, 7E, 8F	5.NBT.B.7, 6.NS.B. 3	MP5, MP6, MP7
Cluster 9: Fraction Number Sense			
Lesson 1: Equivalent Fractions	$\begin{gathered} 6 B, 6 D, 7 A, 7 F, \\ 8 F \end{gathered}$	4.NF.A. 1	MP2, MP6, MP7, MP8
Lesson 2: Fractions in Simplest Form	6B, 6D, 7A, 7F	4.NF.A. 1	MP1, MP2, MP6, MP7
Lesson 3: Comparing and Ordering Fractions	6C, 7E, 7F, 8A	4.NF.A. 2	MP2, MP4, MP5, MP6
Lesson 4: Fractions and Division	6B, 7B	5.NF.B. 3	MP2, MP4, MP8
Lesson 5: Fractions and Decimals	$6 C, 6 D, 7 F, 8 F$	4.NF.C. 6	MP4, MP5, MP6, MP7
Cluster 10: Adding and Subtracting Fractions			
Lesson 1: Adding Fractions with Like Denominators	7B	4.NF.B. 3	MP2, MP5, MP6, MP7
Lesson 2: Subtracting Fractions with Like Denominators	7B	4.NF.B. 3	MP4, MP6, MP7, MP8
Lesson 3: Adding Fractions with Unlike Denominators	7B	5.NF.A.1, 5.NF.A. 2	MP4, MP6, MP7, MP8
Lesson 4: Subtracting with Unlike Denominators	7B	5.NF.A.1, 5.NF.A. 2	MP2, MP4, MP5, MP7
Cluster 11: Multiplying and Dividing Fractions			
Lesson 1: Multiplying a Whole Number and a Fraction	6B, 6E, 7F	4.NF.B.4, 5.NF.B.4, 5.NF.B. 6	MP2, MP6, MP8
Lesson 2: Multiplying Fractions	6B, 6E, 7A	5.NF.B.4, 5.NF.B. 6	MP2, MP4, MP5, MP7
Lesson 3: Dividing a Unit Fraction by a Whole Number	7 B	5.NF.B.7, 6.NS.A. 1	MP4, MP7, MP8
Lesson 4: Dividing a Whole Number by a Unit Fraction	7B	5.NF.B.7, 6.NS.A. 1	MP2, MP5, MP6, MP7
Lesson 5: Dividing Fractions	7B	6.NS.A. 1	MP1, MP6, MP8
Cluster 12: Mixed Numbers			
Lesson 1: Mixed Numbers and Improper Fractions	$6 \mathrm{~B}, 6 \mathrm{E}, 7 \mathrm{~B}$	4.NF.B.4, 5.NF.B. 6	MP2, MP6, MP7
Lesson 2: Adding Mixed Numbers	7 B	4.NF.B.3, 5.NF.A. 1	MP4, MP6, MP7, MP8
Lesson 3: Subtracting Mixed Numbers	7	4.NF.B.3, 5.NF.A. 1	MP5, MP7, MP8
Lesson 4: Multiplying Mixed Numbers	6B, 6E	5.NF.B. 6	MP2, MP3, MP6, MP7
Lesson 5: Dividing Mixed Numbers	8B	6.NS.A.1, 7.NS.A. 3	MP2, MP4, MP6, MP8

Intervention Scope and Sequence continued

	Prerequisite for Units	CCSSM	MP
Intervention Lessons			
Cluster 13: Ratios			
Lesson 1: Ratios	7A, 7F, 8D, 8F	6.RP.A. 1	MP2, MP4, MP6, MP8
Lesson 2: Equivalent Ratios	7A, 8D, 8F	6.RP.A. 3	MP2, MP5, MP7
Cluster 14: Rates and Measurements			
Lesson 1: Unit Rates	7A, 8C, 8D	6.RP.A.2, 6.RP.A.3b	MP6, MP7, MP8
Lesson 2: Converting Customary Measurements	7A	6.RP.A. 3	MP2, MP4, MP6, MP7
Lesson 3: Converting Metric Measurements	7A	6.RP.A. 3	MP4, MP5, MP7, MP8
Cluster 15: Proportional Relationships			
Lesson 1: Graphing Ratios	7A, 8C, 8D, 8	6.RP.A. 3	MP2, MP5, MP6, MP7
Lesson 2: Recognizing Proportional Relationships	$8 \mathrm{C}, 8 \mathrm{E}$	7.RP.A. 2	MP3, MP6
Lesson 3: Constant of Proportionality	8E	7.RP.A. 2	MP2, MP4, MP7, MP8
Cluster 16: Number Sense with Percents			
Lesson 1: Understanding Percent	7A, 7E, 7F, 8F	6.RP.A.3c	MP1, MP2, MP4, MP5
Lesson 2: Estimating Percent	7E, 7F	6.RP.A.3c	MP2, MP4, MP7
Cluster 17: Computations with Percents			
Lesson 1: Finding a Percent of a Number	7A, 7E, 7F, 8F	6.RP.A. 3	MP1, MP4, MP5, MP6
Lesson 2: Finding a Percent	7E, 8	6.RP.A. 3	MP1, MP2, MP6, MP7
Lesson 3: Finding the Whole Given a Percent	7E	6.RP.A. 3	MP1, MP4, MP8
Lesson 4: Sales Tax, Tips, and Simple Interest	8 C	7.RP.A. 3	MP2, MP6
Lesson 5: Markdowns	8 C	7.RP.A. 3	MP6, MP7, MP8
Cluster 18: Exponents			
Lesson 1: Exponents	$7 C, 7 D, 8 B, 8 E$	6.EE.A.1, 5.NBT.A. 2	MP4, MP5, MP6, MP7
Lesson 2: Multiplying Decimals by Powers of Ten	8B	5.NBT.A. 2	MP4, MP6, MP7, MP8
Cluster 19: Geometry			
Lesson 1: Classifying Triangles	6E, 7D	$\begin{gathered} \text { 4.G.A.2, 5.G.B.3, } \\ \text { 5.G.B. } 4 \end{gathered}$	MP2, MP3, MP6, MP7
Lesson 2: Classifying Quadrilaterals	6E, 7D	$\begin{aligned} & \text { 4.G.A.2, 5.G.B.3, } \\ & \text { 5.G.B. } 4 \end{aligned}$	MP5, MP7, MP8
Cluster 20: Measuring 2- and 3-Dimensional Objects			
Lesson 1: Perimeter	6E	4.MD.A. 3	MP4, MP5, MP7, MP8
Lesson 2: Area of Rectangles and Squares	6E, 7D, 8E	4.MD.A. 3	MP2, MP5, MP6, MP7
Lesson 3: Area of Parallelograms and Triangles	7D, 8E	6.G.A. 1	MP2, MP7, MP8
Lesson 4: Nets and Surface Area	7D, 8E	6.G.A. 3	MP4, MP5, MP6, MP7
Lesson 5: Volume of Prisms	6E, 7D, 8E	$\begin{gathered} \text { 5.MD.C.3, 5.MD.C.4, } \\ \text { 5.MD.C. } 5 \end{gathered}$	MP4, MP6, MP7

Prerequisite
Prer Intervention Lessons
for Units

Correlation of Readiness Assessments and Intervention Lessons

Three questions in each Readiness Assessment correlate to an Intervention Lesson. If a student submits an incorrect answer for two of the three questions, that Intervention Lesson is assigned in the student's Study Plan.

	CCSS Standard	Readiness Assessment Question Number	Assigned Intervention Lesson
Ш	4.NBT.B. 5	1, 2, 3	3-2
	4.NBT.B.5, 5.NBT.B. 5	4, 5, 6	3-5
	5.NBT.B. 7	7,29,30	8-2
	5.NF.B.4, 5.NF.B. 6	8,9,10	11-2
	5.NF.B. 6	11, 12, 13	12-4
	4.G.A.2, 5.G.B.3, 5.G.B. 4	14, 15, 16	19-1
	4.G.A.2, 5.G.B.3, 5.G.B. 4	17, 18, 19	19-2
	4.MD.A. 3	20, 21, 22	20-1
	4.MD.A. 3	23, 24, 25	20-2
	$\begin{aligned} & \text { 5.MD.C.3, 5.MD.C.4, } \\ & \text { 5.MD.C. } \end{aligned}$	26, 27, 28	20-5
$\frac{4}{6}$	4.NBT.A. 2	1,2,3	1-2
	4.NBT.B. 6	4, 5, 6	4-4
	4.NBT.B. 6	7, 8, 9	4-5
	5.NBT.B. 6	10, 11, 12	5-3
	5.NBT.B. 6	13, 14, 15	5-4
	$\begin{aligned} & \text { 4.NF.C.6, 5.NBT.A.1, } \\ & \text { 5.NBT.A. } 3 \end{aligned}$	16, 17, 18	6-1
	4.NF.C.7, 5.NBT.A. 3	19, 20, 21	6-2
	5.NBT.B. 7	22, 23, 24	7-1
	5.NBT.B. 7	25, 26, 27	7-2
	5.NBT.B. 7	28, 29, 30	8-3
	Grade 7		
$\mathbb{\nwarrow}$	5.NF.B.4, 5.NF.B. 6	1, 5, 7	11-2
	6.RP.A. 1	2, 4, 8	13-1
	6.RP.A. 3	3, 9, 11	13-2
	6.RP.A.2, 6.RP.A.3b	6,10,13	14-1
	6.RP.A. 3	12, 14, 16	14-2
	6.RP.A. 3	15, 17, 19	14-3
	6.RP.A. 3	18, 20, 22	15-1
	6.RP.A.3c	21, 25, 30	16-1
	5.NBT.B.7, 6.NS.B. 3	23,27, 29	8-5
	6.RP.A. 3	24, 26, 28	17-1
$\stackrel{\infty}{\wedge}$	5.NBT.B. 7	1, 4, 7	8-2
	5.NBT.B. 7	2, 5, 8	8-3
	5.NF.B. 3	3, 6, 10	9-4
	5.NF.A.1, 5.NF.A. 2	9,11,13	10-3
	5.NF.A.1, 5.NF.A. 2	12, 14, 16	10-4
	6.NS.A. 1	15, 17, 18	11-5
	4.NF.B.4, 5.NF.B. 6	19, 22, 30	12-1
	4.NF.B.3, 5.NF.A. 1	20, 23, 26	12-2
	4.NF.B.3, 5.NF.A. 1	21, 24, 28	12-3
	6.NS.C.5, 6.NS.C.6, 6.NS.C. 7	25, 27, 29	21-1

Correlation of Readiness Assessments and Intervention Lessons continued

CCSS Standard	Readiness Assessment Question Number	Assigned Intervention Lesson
3.OA.B. 5	1,12, 14	2-1
3.OA.B.5, 3.MD.C. 7	2, 4,9	2-2
5.OA.A.1, 6.EE.A.2c	3, 5, 7	23-1
6.EE.A.2, 6.EE.B. 6	6, 8, 10	23-2
6.EE.A.3, 6.EE.A. 4	11, 13, 16	24-2
6.EE.A. 3	15, 17, 19	24-3
6.EE.B. 7	18, 20, 22	25-1
6.EE.B. 5	21, 23, 25	25-2
6.EE.B. 7	24, 26, 28	25-3
6.EE.B. 7	27, 29, 30	25-4
5.NBT.B. 7	1, 2, 3	8-2
4.G.A.2, 5.G.B.3, 5.G.B. 4	4,5,6	19-1
4.G.A.2, 5.G.B.3, 5.G.B. 4	7,8,9	19-2
4.MD.A. 3	10, 11, 12	20-2
6.G.A. 1	13, 14, 15	20-3
6.G.A. 3	16, 17, 18	20-4
$\begin{aligned} & \text { 5.MD.C.3, 5.MD.C.4, } \\ & \text { 5.MD.C. } 5 \end{aligned}$	19, 20, 21	20-5
6.EE.A. 2	22, 23, 24	23-4
6.EE.B. 5	25, 26, 27	25-2
6.EE.B. 7	28, 29, 30	25-3
4.NBT.A. 2	1,2,3	1-2
5.NBT.B. 6	4,5,6	5-4
4.NF.C.7, 5.NBT.A. 3	7, 8,9	6-2
5.NBT.B. 7	10, 11, 12	8-3
4.NF.A. 2	13, 14, 15	9-3
6.RP.A.3c	16,17,18	16-2
6.RP.A. 3	19, 20, 21	17-1
6.RP.A. 3	22, 23, 24	17-2
6.RP.A.3c	25, 26, 27	16-1
6.RP.A. 3	28, 29, 30	17-3
5.NBT.B. 7	1, 29, 30	8-2
4.NF.A. 1	2, 3, 4	9-1
4.NF.A. 1	5,6,7	9-2
4.NF.A. 2	8,9,10	$9-3$
4.NF.C. 6	11, 12, 13	9-5
4.NF.B.4, 5.NF.B.4, 5.NF.B. 6	14, 15, 16	11-1
6.RP.A. 1	17, 18, 19	13-1
6.RP.A.3c	20, 21, 22	16-1
6.RP.A.3c	23, 24, 25	16-2
6.RP.A. 3	26,27, 28	17-1

Grade 8		
4.NF.A. 2	1, 2, 3	9-3
6.NS.B.5, 6.NS.B.6, 6.NS.B. 7	4, 5, 7	21-1
6.NS.B. 7	6, 8, 9	21-2
6.NS.B. 6	10, 11, 15	22-4
6.NS.B. 7	12, 13, 14	22-5

	CCSS Standard	Readiness Assessment Question Number	Assigned Intervention Lesson
$\stackrel{m}{\infty}$	6.NS.A.1, 7.NS.A. 3	1, 2, 3	12-5
	6.EE.A.1, 5.NBT.A. 2	4,5,6	18-1
	5.NBT.A. 2	7,8,9	18-2
	7.NS.A. 1	10, 11, 12	21-3
	7.NS.A. 1	13, 14, 15	21-4
	7.NS.A. 2	16, 17, 18	21-5
	6.EE.A. 3	19, 20, 21	24-3
	6.EE.B. 5	22, 23, 24	25-2
	6.EE.B. 7	25, 26, 27	25-5
	6.EE.B. 7	28, 29, 30	25-6
\bigcup_{∞}	6.RP.A.2, 6.RP.A.3b	1, 6, 12	14-1
	6.RP.A. 3	2, 4, 8	15-1
	7.RP.A. 2	3,5,7	15-2
	7.RP.A. 3	9, 10, 13	17-4
	7.EE.B. 4	11,14, 16	22-2
	6.EE.A. 3	15, 17, 19	24-3
	6.EE.B. 5	18, 20, 22	25-2
	6.EE.B. 7	21, 23, 25	25-5
	6.EE.B. 7	24, 26, 28	25-6
	7.EE.B. 4	27, 29, 30	25-7
\bigcirc	6.RP.A. 3	1, 6, 11	13-2
	6.RP.A.2, 6.RP.A.3b	2, 4, 12	14-1
	6.RP.A. 3	3, 5, 7	15-1
	5.G.A.1, 5.G.A. 2	8, 10, 13	22-1
	6.NS.C. 6	9, 14, 16	22-2
	6.EE.A.2, 6.EE.B. 6	15, 17, 18	23-2
	6.EE.A.2, 6.EE.B.6	19, 21, 30	23-3
	6.EE.A. 2	20, 22, 24	23-4
	6.EE.A. 2	23, 25, 27	24-1
	6.EE.B. 7	26, 28, 29	25-1
$\underset{\infty}{\omega}$	5.NBT.B. 7	1,2,3	8-2
	7.RP.A. 2	4,5,6	15-2
	7.RP.A. 2	7, 8,9	15-3
	6.EE.A.1, 5.NBT.A. 2	10, 11, 12	18-1
	6.G.A. 4	13, 14, 15	20-4
	5.MD.C.3, 5.MD.C.4, 5.MD.C. 5	16, 17, 18	20-5
	6.NS.C. 6	19, 20, 21	22-2
	6.G.A. 3	22, 23, 24	22-3
	6.EE.A. 2	25, 26, 27	23-4
	6.EE.A. 2	28, 29, 30	24-1
$\frac{1}{\infty}$	4.NF.C. 6	1,2,3	9-5
	6.RP.A. 1	4,5,6	13-1
	6.RP.A. 3	7, 8,9	13-2
	6.RP.A. 3	10, 11, 12	15-1
	6.RP.A.3C	13, 14, 15	16-1
	6.RP.A. 3	16, 17, 18	17-1
	6.RP.A. 3	19, 20, 21	17-2
	5.G.A.1, 5.G.A. 2	22, 23, 24	22-1
	6.NS.C. 6	25, 26, 27	22-2
	6.EE.A.2, 6.EE.B. 6	28, 29, 30	23-3

[digits] integrates
lesson planning, homework management, intervention, and assessment, all within a user-friendly design that encourages class collaboration via interactive whiteboards. - MaryAnn Karre, Tech \& Learning Magazine

Instructional Framework

interACTIVE Learning

Supported with Understanding by Design principles, all on-level lessons facilitate interACTIVE Instruction. Students engage with the mathematics through exploration, learn concepts explicitly to formalize the knowledge, and connect newly acquired knowledge to prior knowledge. Multimedia elements provide engaging visual, audio, and kinesthetic support to reach all learners.

Differentiation and individualized intervention is integrated in digits through the interACTIVE Learning Cycle ${ }^{\text {TM }}$. All instruction focuses on helping students achieve success with on-level content the first time they see it. Unlike other intervention systems, the digits system is preventative. Instead of providing remediation after students fail on-level content, intervention in digits provides support for necessary prerequisites in advance. By addressing weaknesses up front, students are better prepared to succeed with on-level work. Additionally, unit-based Readiness Assessments enable targeted intervention determined by up-to-date performance data so that students receive exactly the support they need. All differentiation and intervention in digits is coherent with and supportive of core on-level instruction.

interACTIVE Instruction

Elements of Understanding by Design®

Every on-level lesson has a Focus Question that directs students towards deeper mathematical understanding. The Focus Question helps students think about how various math concepts are interconnected and how they are relevant to students' lives. Hosts introduce the Focus Question and appear throughout the lesson to give students additional information about why the specific mathematical concept is important as well as make explicit mathematical relationships.

Each on-level lesson has three parts: Launch, Examples, and Close and Check. The Launch introduces the Focus Question and incorporates problem-based interactive learning to encourage connections to prior knowledge; the Close and Check provides students with an opportunity to answer the Focus Question, complete more practice problems, and record their mathematical thinking. Both parts of the lesson are supported with companion pages for students to record their reasoning and work.

digits Hosts

Fostering Understanding Monograph by Grant Wiggins

It should seem obvious that the point of instruction in mathematics is understanding as reflected in effective problem-solving. Alas, too often mathematics instruction is focused on topic coverage and "plug and chug" work rather than genuine student connections and transfer of learning. Students too often spend valuable instructional time completing computational exercises with a goal of procedural fluency and sparse attention on developing deeper conceptual understanding or strategic competence that would help them become effective and efficient problem-solvers.

The recently released Common Core State Standards for Mathematics (CCSSM) have articulated the goal of deep mathematical understanding. This goal is made clear in at least two ways: the focus of understanding is stressed in the Introduction; and curriculum, instruction, and assessment are expected to mesh the Standards for Mathematical Practice with the Standards for Mathematical Content. "Those content standards, which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice." (CCSSM, 2010, p. 8)

The Understanding by Design® principles are built on this purpose, and thus can provide a useful strategy and set of tools for honoring the spirit and letter of the Common Core State Standards for Mathematics. What's the key? The authors of the CCSSM astutely clarify the aim by focusing on the assessment implications (just as we demand in Understanding by Design®):

> Asking a student to understand something means asking a teacher to assess whether the student has understood it. . . One hallmark of mathematical understanding is the ability to justify, in a way appropriate to the student's mathematical maturity, why a particular mathematical statement is true or where a mathematical rule comes from. (CCSSM, 2010, p. 4)

A steady dose of only simple lessons and questions results in students who "rely on procedures too heavily." With only inflexible recall of skill at their disposal, students are "less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut." (CCSSM, 2010, p. 8)

Know-how is necessary but insufficient. Real understanding and problem-solving requires knowing why. Only then can you adapt prior learning-transfer your learning-to future problems. Students who understand can apply their learning flexibly and creatively; they are good at using content, not just recalling math facts.

Pearson's digits focuses on helping students develop deep conceptual understanding of the mathematics they encounter and strong problem-solving and reasoning abilities, with the goal of ensuring that students understand and are able to do mathematics. When students are grounded in conceptual understanding, problem-solving, and reasoning, students can achieve true mathematical proficiency.

Launch

In digits, students engage with mathematical content at the start of class through Problem-Based Interactive Learning. Students work on a real-world problem that enables them to make use of and build on prior knowledge in order to construct new knowledge.

The Launch is supported with a Companion page and content for the interactive whiteboard or projector screen. Teachers can invite students to the interactive whiteboard to share their solutions and strategies, including using the interactive whiteboard tools or manipulating objects on the screen.

Each Companion Page provides work space to capture student reasoning and a Reflect question that either extends the problem or asks the student to reflect on their method of solving.

Launch

The Launch problem is designed to:

- engage students immediately in math
- draw out prior knowledge
- and introduce the lesson concept.

Teachers can use the Launch as a "warm-up" that students complete independently or have the class work on it together using strategies that are most comfortable to the students. Launch problems are designed to enable student-oriented mathematical exploration and discourse for deeper conceptual understanding, both of which are proven to enhance understanding.

After students complete the Launch problem, they are asked the Focus Question which they are to consider as they move through each Example. The Focus Question is introduced by a host. The hosts are real, young, successful students who middle-graders can look up to. This allows young learners to engage with the math on a new, relatable level. The hosts guide students through the lesson by providing context and reasons for why learning the concept is important, and they do this sincerely and authentically, in their own words.

Launch

Use the numbers and symbols to show 36 as a sum, difference, product, and quotient. You can copy and combine numbers to create multi-digit numbers.

Examples

The examples in digits provide direct, explicit instruction of the lesson's concept. The examples build on one another in difficulty and conceptual development to ensure understanding.

Various animations are built in to support comprehension and engagement. Visual elements such as color-coding, pulsing, and movement draw students' attention to the important details of the concept. Teachers can have students complete the Examples collaboratively or independently.

4) Example

Write two different ratios to compare the number of headphones and the number of portable music players.

5

Example

4) Write two different ratios to compare the number of headphones and the number of portable music players.

Each Example concludes with a "Got It?" The "Got It?" feature is instructional assessment that teachers can use to determine whether or not the class understood the Example. Teachers can administer the "Got It?" in a variety of ways. On entry, the screen is designed with whitespace so that teachers can model a solution or invite students to the board. If the class has student response devices (clickers), the teacher can display multiple choice options. The Student Companion includes the "Got It?" and provides the student space to work out the answer.

The Key Concept summarizes the content of the lesson to support understanding.

Close and Check

The Close and Check brings students back to the Focus Question, which they now answer in their write-in student companion. The Focus Question is designed to enable students to think about the Launch problem and Examples coherently. Additionally, students complete practice problems that are similar to the Examples and answer higher-order questions that require interpretation and analysis.

The accompanying Companion Page includes "Do You Know How?," which are additional problems similar to the Examples and "Do You Understand?" for higher order thinking.

Thus, the Student Companion becomes a student-created reference resource for when students are completing problems outside of class.

Topic Review

In the Topic Review, students work on Pull It All Together, a rich performance task that provides an authentic problem-solving experience.

Task 1

4. Can you use the information below to find how much a person who weighs 102 lb on Earth would weigh on the moon? Explain.

Earth: 174 lb Moon: 29 lb

Earth: 126 lb Moon: 21 lb

Earth: 249 lb
Moon: 41.5 lb

At the end of each Topic, students revisit the Essential Question for the Topic. This activity is a summary point in Understanding by Design principles-students answer the larger questions of when, how, and why to use the skills and concepts they have learned in the Topic.

ano

 Tepic Close-Fisential OuestionTopic Close

interACTIVE Learning Cycle

The interACTIVE Learning Cycle integrates core instruction, differentiation, and intervention to support individual students in achieving grade-level standards.

- Blue - whole class

Purple - differentiated

- Orange - individualized

Readiness Assessment

The Readiness Assessment screens every student on their understanding of the pre-requisite content of the unit.

2) Readiness Lesson

The Readiness Lesson incorporates small group work driven by the data of the Readiness Assessment. Students who are deficient in the pre-requisites are provided with additional instruction while other students work on extending their understanding.

3 Personalized Study Plans

Personalized Study Plans are generated from the results of the Readiness Assessment. Each student receives a study plan with additional instruction and practice tailored to their specific areas of deficiency.

(4) interACTIVE Instruction

Core on-level instruction is interactive with visual learning supports and multimedia to engage students. Formative assessment is integrated to inform pacing and other instruction decisions during class.

(5) Differentiated Homework/Practice

On-level instruction is supported with homework and practice differentiated according to the results of the Readiness Assessment.

6) Summative Assessment

Summative Assessments at the end of a topic and at the end of a unit provide on-going progress monitoring of students' comprehension of instruction.

Enrichment Projects

Teachers can elect to assign enrichment projects to students who demonstrate no or little deficiencies in prerequisites. Topic projects and Unit projects are available, all of which focus on higher-order thinking.

Response to Intervention

digits applies both prevention and remediation in its unique approach to intervention. By addressing prerequisite deficiencies prior to grade-level content instruction, students are more likely to be successful with new material the first time around. Ongoing progress monitoring synchronized with adaptive intervention instruction serves students precisely at point of need and clarifies misconceptions and areas of confusion before they accumulate.

Blue - whole class Purple - differentiated Orange - individualized

Tier 1: Core Instruction

Recommendation	in digits

Universal screener assesses students and identifies areas of weakness

Universal design principles address the needs of specialized populations while benefiting all

Ongoing progress monitoring gauges students' response to instruction

Readiness Assessments for each unit screen students regularly

- Visual and kinesthetic learning engage students
- Explicit cognitive guidance for solving problems, structured problems, and prompts aid comprehension
- Topic and Unit Assessments monitor student progress on content acquisition
- Benchmark Assessments monitor student progress against grade-level expectations

Tier 2: Prevention
Recommendation in digits

Prerequisite deficiencies are identified and addressed within the classroom routine prior to new content instruction

Prevention activities are not disruptive to the target children and nonintrusive to classmates

Readiness Lessons provide pre-requisite instruction for students with deficiencies and extension for students without deficiencies

- Small group activities support Team-Assisted Instruction
- Differentiated practice and homework with student triggered learning aids meet cognitive needs appropriately

Tier 3: Strategic Intervention

Recommendation

Strategic intervention enables success with grade-level content

in digits

Data-driven individualized Study Plans provide intensive instruction for specific areas of weakness as it relates to grade-level content

Strategic intervention is individualized or provided in small groups

Digital lessons support independent study, one-on-one tutoring, or small group instruction

Program Structure

The interACTIVE Learning Cycle provides a simplified view of the program's instructional pathway with data-driven branching for differentiation and personalization at the unit level.

Units in digits are subdivided into topics. Each topic includes a Readiness Lesson, approximately six to ten on-level lessons, a Topic Review, and a Topic Test. Topic resources represented in the interACTIVE Learning Cycle are circled and expanded below.

Grade 6

Traditional Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 154 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT A

Topic 1: Variables and Expressions

DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10
Readiness Assessment for Unit A	Readiness Lesson for Topic 1	Numerical Expressions	Algebraic Expressions	Writing Algebraic Expressions	Evaluating Algebraic Expressions	Expressions With Exponents	Problem Solving	Topic Review	Topic Assessment

Topic 2: Equivalent Expressions

DAY 11	DAY 12	DAY 13	DAY 14	DAY 15	DAY 16	DAY 17	DAY 18	DAY 19	DAY 20
Readiness Lesson for Topic 2	The Identity and Zero Properties	The Commutative Properties	The Associative Properties	Greatest Common Factor	The Distributive Property	Least Common Multiple	Problem Solving	Topic Review	Topic Assessment

Topic 3: Equations and Inequalities

DAY 21	DAY 22	DAY 23	DAY 24	DAY 25	DAY 26	DAY 27	DAY 28	DAY 29	DAY 30
Readiness Lesson for Topic 3	Expressions to Equations	Balancing Equations	Solving Addition and Subtraction Equations	Solving Multiplication and Division Equations	Equations to Inequalities	Solving Inequalities	Problem Solving	Topic Review	Topic Assessment
Topic 4: Two-Variable Relationships									Topic 5
DAY 31	DAY 32	DAY 33	DAY 34	DAY 35	DAY 36	DAY 37	DAY 38	DAY 39	DAY 40
Readiness Lesson for Topic 4	Using Two Variables to Represent a Relationship	Analyzing Patterns Using Tables and Graphs	Relating Tables and Graphs to Equations	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit B	Unit Assessment for Unit A	Readiness Lesson for Topic 5
Topic 5: Multiplying Fractions							Topic 6: Dividing Fractions		
DAY 41	DAY 42	DAY 43	DAY 44	DAY 45	DAY 46	DAY 47	DAY 48	DAY 49	DAY 50
Multiplying Fractions and Whole Numbers	Multiplying Two Fractions	Multiplying Fractions and Mixed Numbers	Multiplying Mixed Numbers	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 6	Dividing Fractions and Whole Numbers	Dividing Unit Fractions by Unit Fractions

Grade 6 Traditional Scheduling Pacing Guide continued

UNIT E

DAY 111	DAY 112	DAY 113	DAY 114	DAY 115	DAY 116	DAY 117	DAY 118	DAY 119	DAY 120
Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit E	Unit Assessment for Unit D	Readiness Lesson for Topic 13	Rectangles and Squares	Right Triangles	Parallelograms	Other Triangles
				Topic 14: Surface Area and Volume					
DAY 121	DAY 122	DAY 123	DAY 124	DAY 125	DAY 126	DAY 127	DAY 128	DAY 129	DAY 130
Polygons	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 14	Analyzing Three- Dimensional Figures	Nets	Surface Areas of Prisms	Surface Areas of Pyramids	Volumes of Rectangular Prisms
					UNIT				
					Topic 15: Data Displays				
DAY 131	DAY 132	DAY 133	DAY 134	DAY 135	DAY 136	DAY 137	DAY 138	DAY 139	DAY 140
Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit F	Unit Assessment for Unit E	Readiness Lesson for Topic 15	Statistical Questions	Dot Plots	Histograms	Box Plots
				Topic 16: Measures of Center and Variation					
DAY 141	DAY 142	DAY 143	DAY 144	DAY 145	DAY 146	DAY 147	DAY 148	DAY 149	DAY 150
Choosing an Appropriate Display	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 16	Median	Mean	Variability	Interquartile Range	Mean Absolute Deviation
DAY 151	DAY 152	DAY 153	DAY 154						
Problem Solving	Topic Review	Topic Assessment	Unit Assessment for Unit F						

Grade 7

Traditional Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 164 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT A

Topic 6: Decimals and Percents

DAY 51	DAY 52	DAY 53	DAY 54	DAY 55	DAY 56	DAY 57	DAY 58	DAY 59	DAY 60
Repeating Decimals	Terminating Decimals	Percents Greater Than 100	Percents Less Than 1	Fractions, Decimals, and Percents	Percent Error	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit C
	UNIT C								
	Topic 7: Equivalent Expressions								Topic 8
DAY 61	DAY 62	DAY 63	DAY 64	DAY 65	DAY 66	DAY 67	DAY 68	DAY 69	DAY 70
Unit Assessment for Unit B	Readiness Lesson for Topic 7	Expanding Algebraic Expressions	Factoring Algebraic Expressions	Adding Algebraic Expressions	Subtracting Algebraic Expressions	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 8
Topic 8: Equations							Topic 9: Inequalities		
DAY 71	DAY 72	DAY 73	DAY 74	DAY 75	DAY 76	DAY 77	DAY 78	DAY 79	DAY 80
Solving Simple Equations	Writing Two-Step Equations	Solving Two-Step Equations	Solving Equations Using the Distributive Property	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 9 UNIT	Solving Inequalities Using Addition or Subtraction	Solving Inequalities Using Multiplication or Division
							Topic 10: Angles		
DAY 81	DAY 82	DAY 83	DAY 84	DAY 85	DAY 86	DAY 87	DAY 88	DAY 89	DAY 90
Solving Two-Step Inequalities	Solving Multi-Step Inequalities	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit D	Unit Assessment for Unit C	Readiness Lesson for Topic 10	Measuring Angles	Adjacent Angles
						Topic 11: Circles			
DAY 91	DAY 92	DAY 93	DAY 94	DAY 95	DAY 96	DAY 97	DAY 98	DAY 99	DAY 100
Complementary Angles	Supplementary Angles	Vertical Angles	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 11	Center, Radius, and Diameter	Circumference of a Circle	Area of a Circle
				Topic 12:	- and 3-Di	ensional	apes		
DAY 101	DAY 102	DAY 103	DAY 104	DAY 105	DAY 106	DAY 107	DAY 108	DAY 109	DAY 110
Relating Circumference and Area of a Circle	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 12	Geometry Drawing Tools	Drawing Triangles with Given Conditions 1	Drawing Triangles with Given Conditions 2	2-D Slices of Right Rectangular Prisms	2-D Slices of Right Rectangular Pyramids

Grade 7 Traditional Scheduling Pacing Guide continued

			Topic 13: Surface Area and Volume						
DAY 111	DAY 112	DAY 113	DAY 114	DAY 115	DAY 116	DAY 117	DAY 118	DAY 119	DAY 120
Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 13	Surface Areas of Right Prisms	Volumes of Right Prisms	Surface Areas of Right Pyramids	Volumes of Right Pyramids	Problem Solving	Topic Review
			UNIT E						
			Topic 14: Sampling						
DAY 121	DAY 122	DAY 123	DAY 124	DAY 125	DAY 126	DAY 127	DAY 128	DAY 129	DAY 130
Topic Assessment	Readiness Assessment for Unit E	Unit Assessment for Unit D	Readiness Lesson for Topic 14	Populations and Samples	Estimating a Population	Convenience Sampling	Systematic Sampling	Simple Random Sampling	Comparing Sampling Methods
			Topic 15: Comparing Two Populations						
DAY 131	DAY 132	DAY 133	DAY 134	DAY 135	DAY 136	DAY 137	DAY 138	DAY 139	DAY 140
Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 15	Statistical Measures	Multiple Populations and Inferences	Using Measures of Center	Using Measures of Variability	Exploring Overlap in Data Sets	Problem Solving
				UNIT F					
				Topic 16: Probability Concepts					
DAY 141	DAY 142	DAY 143	DAY 144	DAY 145	DAY 146	DAY 147	DAY 148	DAY 149	DAY 150
Topic Review	Topic Assessment	Readiness Assessment for Unit F	Unit Assessment for Unit E	Readiness Lesson for Topic 16	Likelihood and Probability	Sample Space	Relative Frequency and Experimental Probability	Theoretical Probability	Probability Models
			Topic 17: Compound Events						
DAY 151	DAY 152	DAY 153	DAY 154	DAY 155	DAY 156	DAY 157	DAY 158	DAY 159	DAY 160
Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 17	Compound Events	Sample Spaces	Counting Outcomes	Finding Theoretical Probabilities	Simulation with Random Numbers	Finding Probabilities by Simulation
DAY 161	DAY 162	DAY 163	DAY 164						
Problem Solving	Topic Review	Topic Assessment	Unit Assessment for Unit F						

Grade 8

Traditional Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 148 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT A

Topic 1: Rational and Irrational Numbers

DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10
Readiness Assessment for Unit A	Readiness Lesson for Topic 1 UNIT B	Expressing Rational Numbers with Decimal Exponents	Exploring Irrational Numbers	Approximating Irrational Numbers	Comparing and Ordering Rational and Irrational Numbers	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit B
	Topic 2: Linear Equations in One Variable								Topic 3
DAY 11	DAY 12	DAY 13	DAY 14	DAY 15	DAY 16	DAY 17	DAY 18	DAY 19	DAY 20
Unit Assessment for Unit A	Readiness Lesson for Topic 2	Solving Two-Step Equations	Solving Equations with Variables on Both Sides	Solving Equations Using the Distributive Property	Solutions One, None, or Infinitely Many	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 3
Topic 3: Integer Exponents									Topic 4
DAY 21	DAY 22	DAY 23	DAY 24	DAY 25	DAY 26	DAY 27	DAY 28	DAY 29	DAY 30
Perfect Squares, Square Roots, and Equations of the Form $x^{2}=p$	Perfect Cubes, Cube Roots, and Equations of the Form $x^{3}=p$	Exponents and Multiplication	Exponents and Division	Zero and Negative Exponents	Comparing Expressions with Exponents	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 4 UNIT C
Topic 4: Scientific Notation									Topic 5
DAY 31	DAY 32	DAY 33	DAY 34	DAY 35	DAY 36	DAY 37	DAY 38	DAY 39	DAY 40
Exploring Scientific Notation	Using Scientific Notation to Describe Very Large Quantities	Using Scientific Notation to Describe Very Small Quantities	Operating with Numbers Expressed in Scientific Notation	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit C	Unit Assessment for Unit B	Readiness Lesson for Topic 5
Topic 5: Proportional Relationships, Lines, and Linear Equations									Topic 6
DAY 41	DAY 42	DAY 43	DAY 44	DAY 45	DAY 46	DAY 47	DAY 48	DAY 49	DAY 50
Graphing Proportional Relationships	Linear Equations: $y=m x$	The Slope of a Line	Unit Rates and Slope	The y-intercept of a Line	Linear Equations: $y=m x+b$	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 6

Grade 8 Traditional Scheduling Pacing Guide continued

Topic 6: Systems of Two Linear Equations									
DAY 51	DAY 52	DAY 53	DAY 54	DAY 55	DAY 56	DAY 57	DAY 58	DAY 59	DAY 60
What is a System of Linear Equations in Two Variables?	Estimating Solutions of Linear Systems by Inspection UNIT D	Solving Systems of Linear Equations by Graphing	Solving Systems of Linear Equations Using Substitution	Solving Systems of Linear Equations Using Addition	Solving Systems of Linear Equations Using Subtraction	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit D
Topic 7: Defining and Comparing Functions									
DAY 61	DAY 62	DAY 63	DAY 64	DAY 65	DAY 66	DAY 67	DAY 68	DAY 69	DAY 70
Unit Assessment for Unit C	Readiness Lesson for Topic 7	Recognizing a Function	Representing a Function	Linear Functions	Nonlinear Functions	Increasing and Decreasing Intervals	Sketching a Function Graph	Problem Solving	Topic Review
Topic 8: Linear Functions									
DAY 71	DAY 72	DAY 73	DAY 74	DAY 75	DAY 76	DAY 77	DAY 78	DAY 79	DAY 80
Topic Assessment	Readiness Lesson for Topic 8	Defining a Linear Function Rule UNIT E	Rate of Change	Initial Value	Comparing Two Linear Functions	Constructing a Function to Model a Linear Relationship	Problem Solving	Topic Review	Topic Assessment
Topic 9: Congruence									
DAY 81	DAY 82	DAY 83	DAY 84	DAY 85	DAY 86	DAY 87	DAY 88	DAY 89	DAY 90
Readiness Assessment for Unit E	Unit Assessment for Unit D	Readiness Lesson for Topic 9	Translations	Reflections	Rotations	Congruent Figures	Problem Solving	Topic Review	Topic Assessment
Topic 10: Similarity							Topic 11		
DAY 91	DAY 92	DAY 93	DAY 94	DAY 95	DAY 96	DAY 97	DAY 98	DAY 99	DAY 100
Readiness Lesson for Topic 10	Dilations	Similar Figures	Relating Similar Triangles and Slope	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 11	Angles, Lines, and Transversals	Reasoning and Parallel Lines
Topic 11: Reasoning in Geometry						Topic 12: Using the Pythagorean Theorem			
DAY 101	DAY 102	DAY 103	DAY 104	DAY 105	DAY 106	DAY 107	DAY 108	DAY 109	DAY 110
Interior Angles of Triangles	Exterior Angles of Triangles	Angle-Angle Triangle Similarity	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 12	Reasoning and Proof	The Pythagorean Theorem	Finding Unknown Leg Lengths

DAY 111	DAY 112	DAY 113	DAY 114	DAY 115	Topic 13: Surface Area and Volume				
					DAY 116	DAY 117	DAY 118	DAY 119	DAY 120
The Converse of the Pythagorean Theorem	Distance in the Coordinate Plane	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 13	Surface Areas of Cylinders	Volumes of Cylinders	Surface Areas of Cones	Volumes of Cones
							UNIT F		
							Topic 14: Scatter Plots		
DAY 121	DAY 122	DAY 123	DAY 124	DAY 125	DAY 126	DAY 127	DAY 128	DAY 129	DAY 130
Surface Areas of Spheres	Volumes of Spheres	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit F	Unit Assessment for Unit E	Readiness Lesson for Topic 14	Interpreting a Scatter Plot	Constructing a Scatter Plot
							Topic 15:	Relative Fre	quency
DAY 131	DAY 132	DAY 133	DAY 134	DAY 135	DAY 136	DAY 137	DAY 138	DAY 139	DAY 140
Investigating Patterns Clustering and Outliers	Investigating Patterns Association	Linear Models - Fitting a Straight Line	Linear Models - Using the Equation of a Linear Model	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 15	Bivariate Categorical Data	Constructing Two-Way Frequency Tables
DAY 141	DAY 142	DAY 143	DAY 144	DAY 145	DAY 146	DAY 147	DAY 148		
Interpreting Two-Way Frequency Tables	Constructing Two-Way Relative Frequency Tables	Interpreting Two-Way Relative Frequency Tables	Choosing a Measure of Frequency	Problem Solving	Topic Review	Topic Assessment	Unit Assessment for Unit F		

Accelerated Grade 7
 Traditional Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 162 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT I

	Topic 1						Topic 2		
DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10
Readiness Assessment for Unit I	Rational Numbers, Opposites and Absolute Value	Adding Integers, Adding Rational Numbers	Subtracting Integers, Subtracting Rational Numbers	Distance on a Number Line	Problem Solving, Topic Review	Topic Assessment	Multiplying Integers	Mulltiplying Rational Numbers	Dividing Integers, Dividing Rational Numbers
		Topic 3					Topic 4		
DAY 11	DAY 12	DAY 13	DAY 14	DAY 15	DAY 16	DAY 17	DAY 18	DAY 19	DAY 20
Problem Solving, Topic Review	Topic Assessment	Percents Greater Than 100, Percents Less Than 1	Fractions, Decimals, and Percents	Percent Error	Problem Solving, Topic Review	Topic Assessment	Expressing Rational Numbers with Decimal Expansions	Exploring Irrational Numbers	Approximating Irrational Numbers, Compare and Order Numbers
		Topic 5							
DAY 21	DAY 22	DAY 23	DAY 24	DAY 25	DAY 26	DAY 27	DAY 28	DAY 29	DAY 30
Problem Solving, Topic Review	Topic Assessment	Perfect Squares, Square Roots, and Equations	Perfect Cubes, Cube Roots, and Equations	Exponents and Multiplica- tion	Exponents and Division	Zero and Negative Exponents UNIT II	Comparing Expressions with Exponents	Problem Solving, Topic Review	Topic Assessment
Topic 6							Topic 7		
DAY 31	DAY 32	DAY 33	DAY 34	DAY 35	DAY 36	DAY 37	DAY 38	DAY 39	DAY 40
Exploring Scientific Notation	Using Scientific Notation to Describe Quantities	Operating with Numbers Expressed in Scientific Notation	Problem Solving, Topic Review	Topic Assessment	Unit Assessment for Unit I	Readiness Assessment for Unit II	Equivalent Ratios	Unit Rates	Ratios with Fractions
Topic 8									
DAY 41	DAY 42	DAY 43	DAY 44	DAY 45	DAY 46	DAY 47	DAY 48	DAY 49	DAY 50
Unit Rates with Fractions	Problem Solving, Topic Review	Topic Assessment	Proportional Relationships and Tables	Proportional Relationships and Graphs	Constant of Proportionality	Proportional Relationships and Equations	Maps and Scale Drawings	Problem Solving, Topic Review	Topic Assessment

Topic 9								Topic 10	
DAY 51	DAY 52	DAY 53	DAY 54	DAY 55	DAY 56	DAY 57	DAY 58	DAY 59	DAY 60
The Percent Equation	Using the Percent Equation	Simple Interest	Compound Interest	Percent Increase and Decrease	Markups and Markdowns	Problem Solving, Topic Review	Topic Assessment	Expanding Algebraic Expressions	Factoring Algebraic Expressions
				Topic 11		Topic 12			
DAY 61	DAY 62	DAY 63	DAY 64	DAY 65	DAY 66	DAY 67	DAY 68	DAY 69	DAY 70
Adding Algebraic Expressions	Subtracting Algebraic Expressions	Problem Solving, Topic Review	Topic Assessment	Writing Two-Step Equations	Solving Two-Step Equations	Solving Equations with Variables on Both Sides	Solving Equations Using the Distributive Property	Solutions - One, None, or Infinitely Many	Problem Solving, Topic Review
	Topic 13					Topic 14			
DAY 71	DAY 72	DAY 73	DAY 74	DAY 75	DAY 76	DAY 77	DAY 78	DAY 79	DAY 80
Topic Assessment	Solving Inequalities Using, Addition or Subtraction	Solving Inequalities Using Multiplication or Division	Solving Multi-Step Inequalities	Problem Solving, Topic Review	Topic Assessment	Graphing Proportional Relationships	Linear Equations: $y=m x$	The Slope of a Line	Unit Rates and Slope
					Topic 15				
DAY 81	DAY 82	DAY 83	DAY 84	DAY 85	DAY 86	DAY 87	DAY 88	DAY 89	DAY 90
The y-intercept of a Line	Linear Equations:$y=m x+b$	Problem Solving, Topic Review	Topic Assessment	Unit Assessment for Unit II	Readiness Assessment for Unit III	Populations and Samples	Estimating a Population	Convenience Sampling	Systematic Sampling
				Topic 16					
DAY 91	DAY 92	DAY 93	DAY 94	DAY 95	DAY 96	DAY 97	DAY 98	DAY 99	DAY 100
Simple Random Sampling	Comparing Sampling Methods	Problem Solving, Topic Review	Topic Assessment	Statistical Measures	Multiple Populations and Inferences	Using Measures of Center	Using Measures of Variability	Exploring Overlap in Data Sets	Problem Solving, Topic Review
	Topic 17							Topic 18	
DAY 101	DAY 102	DAY 103	DAY 104	DAY 105	DAY 106	DAY 107	DAY 108	DAY 109	DAY 110
Topic Assessment	Likelihood and Probability	Sample Space	Relative Frequency and Experimental Probability	Theoretical Probability	Probability Models	Problem Solving, Topic Review	Topic Assessment	Compound Events	Sample Spaces

Accelerated Grade 7 Traditional Scheduling Pacing Guide continued

Grade 6

Block Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 77 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT A

Topic 1: Variables and Expressions									
DAY 1		DAY 2		DAY 3		DAY 4		DAY 5	
Readiness Assessment for Unit A	Readiness Lesson for Topic 1	Numerical Expressions	Algebraic Expressions	Writing Algebraic Expressions	Evaluating Algebraic Expressions	Expressions With Exponents	Problem Solving	Topic Review	Readiness Lesson for Topic 2
	Topic 2: Equivalent Expressions								
DAY 6		DAY 7		DAY 8		DAY 9		DAY 10	
Topic Assessment	The Identity and Zero Properties	The Commutative Properties	The Associative Properties	Greatest Common Factor	The Distributive Property	Least Common Multiple	Problem Solving	Topic Review	Readiness Lesson for Topic 3

DAY 11		DAY 12		DAY 13		DAY 14		DAY 15	
Topic Assessment	Expressions to Equations	Balancing Equations	Solving Addition and Subtraction Equations	Solving Multiplication and Division Equations	Equations to Inequalities	Solving Inequalities	Problem Solving	Topic Review	Readiness Lesson for Topic 4
	Topic 4: Two-Variable Relationships								Topic 5:
DAY 16		DAY 17		DAY 18		DAY 19		DAY 20	
Topic Assessment	Using Two Variables to Represent a Relationship	Analyzing Pattern Using Tables and Graphs	Relating Tables and Graphs to Equations	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 4	Unit Assessment for Unit A	Readiness Lesson for Topic 5
Topic 5: Multiplying Fractions							Topic 6		
DAY 21		DAY 22		DAY 23		DAY 24		DAY 25	
Multiplying Fractions and Whole Numbers	Multiplying Two Fractions	Multiplying Fractions and Mixed Numbers	Multiplying Mixed Numbers	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 6	Dividing Fractions and Whole Numbers	Dividing Unit Fractions by Unit Fractions

Grade 6 Block Scheduling Pacing Guide continued

UNIT E

					Topic 13: Area				
DAY 56		DAY 57		DAY 58		DAY 59		DAY 60	
Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit E	Unit Assessment for Unit D	Readiness Lesson for Topic 13	Rectangles and Squares	Right Triangles	Parallelograms	Other Triangles
					Topic 14: Surface Area and Volume				
DAY 61		DAY 62		DAY 63		DAY 64		DAY 65	
Polygons	Problem Solving	Topic Review	Readiness Lesson for Topic 14	Topic Assessment	Analyzing Three- Dimensional Figures UNIT F	Nets	Surface Areas of Prisms	Surface Areas of Pyramids	Volumes of Rectangular Prisms
					Topic 15: Data Displays				
DAY 66		DAY 67		DAY 68 Unit Assessment for Unit E	Readiness Lesson for Topic 15	DAY 69		DAY 70	
Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit F			Statistical Questions	Dot Plots	Histograms	Box Plots
					Topic 16: Measures of Center and Variation				
DAY 71		DAY 72		DAY 73		DAY 74		DAY 75	
Choosing an Appropriate Display	Problem Solving	Topic Review	Readiness Lesson for Topic 16	Topic Assessment	Median	Mean	Variability	Interquartile Range	Mean Absolute Deviation
DAY 76		DAY 77							
Problem Solving	Topic Review	Topic Assessment	Unit Assessment for Unit F						

Grade 7

Block Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 82 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT A

Topic 1: Ratios and Rates									Topic 2
DAY 1		DAY 2		DAY 3		DAY 4		DAY 5	
Readiness Assessment for Unit A	Readiness Lesson for Topic 1	Equivalent Ratios	Unit Rates	Ratios With Fractions	Unit Rates With Fractions	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 2
Topic 2: Proportional Relationships									Topic 3
DAY 6		DAY 7		DAY 8		DAY 9		DAY 10	
Proportional Relationships and Tables	Proportional Relationships and Graphs	Constant of Proportionality	Proportional Relationships and Equations	Maps and Scale Drawings	Problem Solving	Topic Review	Readiness Lesson for Topic 3	Topic Assessment	The Percent Equation
Topic 3: Percents									
DAY 11		DAY 12		DAY 13		DAY 14		DAY 15	
Using the Percent Equation	Simple Interest	Compound Interest	Percent Increase and Decrease	Markups and Markdowns	Problem Solving	Topic Review	Readiness Assessment for Unit B	Topic Assessment	Readiness Lesson for Topic 4
	Topic 4: Adding and Subtracting Rational Numbers								
DAY 16		DAY 17		DAY 18		DAY 19		DAY 20	
Unit Assessment for Unit A	Rational Numbers, Opposites, and Absolute Value	Adding Integers	Adding Rational Numbers	Subtracting Integers	Subtracting Rational Numbers	Distance on a Number Line	Problem Solving	Topic Review	Readiness Lesson for Topic 5
	Topic 5: Multiplying and Dividing Rational Numbers								
DAY 21		DAY 22		DAY 23		DAY 24		DAY 25	
Topic Assessment	Multiplying Integers	Multiplying Rational Numbers	Dividing Integers	Dividing Rational Numbers	Operations with Rational Numbers	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 6

Topic 6: Decimals and Percents

DAY 26		DAY 27		DAY 28		DAY 29		DAY 30	
Repeating Decimals	Terminating Decimals UNIT C	Percents Greater Than 100	Percents Less Than 1	Fractions, Decimals, and Percents	Percent Error	Problem Solving	Topic Review	Topic Assessment for Unit B	Readiness Assessment for Unit C
	Topic 7: Equivalent Expressions								Topic 8
DAY 31		DAY 32		DAY 33		DAY 34		DAY 35	
Unit Assessment	Readiness Lesson for Topic 7	Expanding Algebraic Expressions	Factoring Algebraic Expressions	Adding Algebraic Expressions	Subtracting Algebraic Expressions	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 8
Topic 8: Equations							Topic 9: Inequalities		
DAY 36		DAY 37		DAY 38		DAY 39		DAY 40	
Solving Writing Simple Two-Step Equations Equations		Solving Two-Step Equations	Solving Equations Using the Distributive Property	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 9	Solving Inequalities Using Addition or Subtraction	Solving Inequalities Using Multiplication or Division
							Topic 10	ngles	
DAY 41		DAY 42		DAY 43		DAY 44		DAY 45	
Solving Two-Step Inequalities	Solving Multi-Step Inequalities	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit D	Unit Assessment for Unit C	Readiness Lesson for Topic 10	Measuring Angles	Adjacent Angles
							Topic 11: Circles		
DAY 46		DAY 47		DAY 48		DAY 49		DAY 50	
Complementary Angles	Supplementary Angles	Vertical Angles	Problem Solving	Topic Review	Readiness Lesson for Topic 11	Topic Assessment	Center, Radius, and Diameter	Circumference of a Circle	Area of a Circle
					Topic 12: 2- and 3-Dimensional Shapes				
DAY 51		DAY 52		DAY 53		DAY 54		DAY 55	
Relating Circumference and Area of a Circle	Problem Solving	Topic Review	Readiness Lesson for Topic 12	Topic Assessment	Geometry Drawing Tools	Drawing Triangles with Given Conditions 1	Drawing Triangles with Given Conditions 2	2-D Slices of Right Rectangular Prisms	2-D Slices of Right Rectangular Pyramids

Grade 7 Block Scheduling Pacing Guide continued

Grade 8

Block Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 74 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT A

Grade 8 Block Scheduling Pacing Guide continued

Topic 6: Systems of Two Linear Equations									
DAY 26		DAY 27		DAY 28		DAY 29		DAY 30	
What is a System of Linear Equations in Two Variables?	Estimating Solutions of Linear Systems by Inspection UNIT D	Solving Systems of Linear Equations by Graphing	Solving Systems of Linear Equations Using Substitution	Solving Systems of Linear Equations Using Addition	Solving Systems of Linear Equations Using Subtraction	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit D
	Topic 7: Defining and Comparing Functions								
DAY 31		DAY 32		DAY 33		DAY 34		DAY 35	
Unit Assessment for Unit C	Readiness Lesson for Topic 7	Recognizing a Function	Representing a Function	Linear Functions	Nonlinear Functions	Increasing and Decreasing Intervals	Sketching a Function Graph	Problem Solving	Topic Review
	Topic 8: Linear Functions								
DAY 36		DAY 37		DAY 38		DAY 39		DAY 40	
Topic Assessment	Readiness Lesson for Topic 8	Defining a Linear Function Rule	Rate of Change UNIT E	Initial Value	Comparing Two Linear Functions	Constructing a Function to Model a Linear Relationship	Problem Solving	Topic Review	Readiness Assessment for Unit E
			Topic 9: Congruence						
DAY 41		DAY 42		DAY 43		DAY 44		DAY 45	
Topic Assessment	Readiness Lesson for Topic 9	Unit Assessment for Unit D	Translations	Reflections	Rotations	Congruent Figures	Problem Solving	Topic Review	Readiness Lesson for Topic 10
	Topic 10: Similarity						Topic 11		
DAY 46		DAY 47		DAY 48		DAY 49		DAY 50	
Topic Assessment	Dilations	Similar Figures	Relating Similar Triangles and Slope	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 11	Angles, Lines, and Transversals	Reasoning and Parallel Lines
Topic 11: Reasoning in Geometry							Topic 12		
DAY 51		DAY 52		DAY 53		DAY 54		DAY 55	
Interior Angles of Triangles	Exterior Angles of Triangles	Angle-Angle Triangle Similarity	Problem Solving	Topic Review	Readiness Lesson for Topic 12	Topic Assessment	Reasoning and Proof	The Pythagorean Theorem	Finding Unknown Leg Lengths

Topic 12: Using the Pythagorean Theorem					Topic 13: Surface Area and Volume				
DAY 56		DAY 57		DAY 58		DAY 59		DAY 60	
The Converse of the Pythagorean Theorem	Distance in the Coordinate Plane	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 13	Surface Areas of Cylinders	Volumes of Cylinders UNIT F	Surface Areas of Cones	Volumes of Cones
							Topic 14: Scatter Plots		
DAY 61		DAY 62		DAY 63		DAY 64		DAY 65	
Surface Areas of Spheres	Volumes of Spheres	Problem Solving	Topic Review	Topic Assessment	Readiness Assessment for Unit F	Unit Assessment for Unit E	Readiness Lesson for Topic 14	Interpreting a Scatter Plot	Constructing a Scatter Plot
							Topic 15: Relative Frequency		
DAY 66		DAY 67		DAY 68		DAY 69		DAY 70	
Investigating Patterns Clustering and Outliers	Investigating Patterns Association	Linear Models - Fitting a Straight Line	Linear Models Using the Equation of a Linear Model	Problem Solving	Topic Review	Topic Assessment	Readiness Lesson for Topic 15	Bivariate Categorical Data	Constructing Two-Way Frequency Tables
DAY 71		DAY 72		DAY 73		DAY 74			
Interpreting Two-Way Frequency Tables	Constructing Two-Way Relative Frequency Tables	Interpreting Two-Way Relative Frequency Tables	Choosing a Measure of Frequency	Problem Solving	Topic Review	Topic Assessment	Unit Assessment for Unit F		

Accelerated Grade 7

Block Scheduling Pacing Guide

This Pacing Guide is a suggested pacing to help you plan your course. The total of 81 days allows for spending additional time on particular lessons, for completing enrichment activities, or for special events that vary from school to school.

UNIT I

Topic 9								Topic 10	
DAY 26		DAY 27		DAY 28		DAY 29		DAY 30	
The Percent Equation	Using the Percent Equation	Simple Interest	Compound Interest	Percent Increase and Decrease	Markups and Markdowns	Problem Solving, Topic Review	Topic Assessment	Expanding Algebraic Expressions	Factoring Algebraic Expressions
				Topic 11		Topic 12			
DAY 31		DAY 32		DAY 33		DAY 34		DAY 35	
Adding Algebraic Expressions	Subtracting Algebraic Expressions	Problem Solving, Topic Review	Topic Assessment	Writing Two-Step Equations	Solving Two-Step Equations	Solving Equations with Variables on Both Sides	Solving Equations Using the Distributive Property	Solutions - One, None, or Infinitely Many	Problem Solving, Topic Review
	Topic 13					Topic 14			
DAY 36		DAY 37		DAY 38		DAY 39		DAY 40	
Topic Assessment	Solving Inequalities Using Addition or Subtraction	Solving Inequalities Using Multiplication or Division	Solving Multi-Step Inequalities	Problem Solving, Topic Review	Topic Assessment	Graphing Proportional Relationships	Linear Equations: $y=m x$	The Slope of a Line	Unit Rates and Slope
					Topic 15				
DAY 41		DAY 42		DAY 43		DAY 44		DAY 45	
The y-intercept of a Line	Linear Equations: $y=m x+b$	Problem Solving, Topic Review	Topic Assessment	Unit Assessment for Unit II	Readiness Assessment for Unit III	Populations and Samples	Estimating a Population	Convenience Sampling	Systematic Sampling
				Topic 16					
DAY 46		DAY 47		DAY 48		DAY 49		DAY 50	
Simple Random Sampling	Comparing Sampling Methods	Problem Solving, Topic Review	Topic Assessment	Statistical Measures	Multiple Populations and Inferences	Using Measures of Center	Using Measures of Variability	Exploring Overlap in Data Sets	Problem Solving, Topic Review
	Topic 17							Topic 18	
DAY 51		DAY 52		DAY 53		DAY 54		DAY 55	
Topic Assessment	Likelihood and Probability	Sample Space	Relative Frequency and Experimental Probability	Theoretical Probability	Probability Models	Problem Solving, Topic Review	Topic Assessment	Compound Events	Sample Spaces

Accelerated Grade 7 Block Scheduling Pacing Guide continued

Grade 6

Year-Long Curriculum Guide

digits Grade 6 is a comprehensive curriculum, designed to be taught over the course of a full school year. This Year-Long Curriculum Guide offers a suggested pacing for the teaching of the course. The suggested number of days for each topic is based on a 45 -minute class period. The number of days spent on each topic will vary from class to class and from year to year depending on the learning needs of the students.

August/September	October	November
Topic 1: Variables and Expressions	Topic 3: Equations and Inequalities	Topic 5: Multiplying Fractions
Pacing: 10 days	Pacing: 10 days	Pacing: 9 days
Focus Concepts/Skills: numeric and algebraic expressions; exponents; order of operations	Focus Concepts/Skills: solving one-variable equations; solving one-variable inequalities; graphing solutions of one-variable inequalities	Focus Concepts/Skills: multiplying fractions
Key Math Terms: numerical expression, term, variable, algebraic expression, coefficient, constant, power, base, exponent	Key Math Terms: equation, equivalent expressions, equivalent equations, inverse operations, inequality	Key Math Terms: denominator, numerator, proper fraction, mixed number, improper fraction
Topic 2: Equivalent Expressions	Topic 4: Two-Variable Relationships	Topic 6: Dividing Fractions
Pacing: 10 days	Pacing: 8 days	Pacing: 9 days
Focus Concepts/Skills: Identity Property; Zero Property; Commutative Properties; Associative Properties; Distributive Properties	Focus Concepts/Skills: representing algebraic relationships using tables, graphs, and equations	Focus Concepts/Skills: dividing fractions
Key Math Terms: factor, greatest common factor, prime number, prime factorization, Distributive Property, least common multiple	Key Math Terms: dependent variable, independent variable, variable	Key Math Terms: reciprocals, proper fraction, quotient, unit fraction, improper fraction, mixed number

Grade 6 Year-Long Curriculum Guide continued

December	January	February
Topic 7: Fluency with Decimals	Topic 8: Integers	Topic 10: Ratios
Pacing: 11 days	Pacing: 9 days	Pacing: 10 days
Focus Concepts/Skills: operating with decimals and fractions; comparing decimals and fractions	Focus Concepts/Skills: representing integers; comparing and ordering integers; solving problems involving absolute value	Focus Concepts/Skills: ratios; solving problems involving ratios
Key Math Terms: compatible numbers	Key Math Terms: opposites, integer, absolute value, coordinate plane, quadrant, transformation, ordered pair	Key Math Terms: ratio, terms of a ratio, part-to-part ratio, part-to-whole ratios, whole-to-part ratio, equivalent ratio
Winter Break	Topic 9: Rational Numbers	Topic 11: Rates
	Pacing: 10 days	Pacing: 9 days
	Focus Concepts/Skills: representing rational numbers; comparing and ordering rational numbers; solving problems involving polygons in the coordinate plane	Focus Concepts/Skills: rates; unit rates; solving problems involving rates
	Key Math Terms: rational number, polygon, vertex of a polygon	Key Math Terms: rate, unit rate, unit price, conversion factor

March	April	May
Topic 12: Ratio Reasoning	Topic 14: Surface Area and Volume	Topic 16: Measures of Center and Variation
Pacing: 9 days	Pacing: 10 days	Pacing: 10 days
Focus Concepts/Skills: proportional relationships; percents; solving problems involving proportional relationships and percents	Focus Concepts/Skills: nets; analyzing three-dimensional figures; solving surface area and volume problems	Focus Concepts/Skills: summarizing data sets using measures of center and variability
Key Math Terms: proportion, proportional relationship, percent, circle graph	Key Math Terms: three-dimensional figure, prism, pyramid, net, surface area of a three-dimensional figure, volume of a prism	Key Math Terms: measure of center, median, mean, variability, measure of variability, range, interquartile range, deviate, mean absolute deviation
Topic 13: Area	Topic 15: Data Displays	
Pacing: 10 days	Pacing: 10 days	
Focus Concepts/Skills: solving area problems involving polygons	Focus Concepts/Skills: describing and displaying numerical data sets	
Key Math Terms: area, right triangle, vertex of a polygon, area of a triangle, area of a parallelogram, acute triangle, obtuse triangle, polygon	Key Math Terms: statistical question, data, dot plot, frequency, distribution of a data set, histogram, box plot	

Grade 7

Year-Long Curriculum Guide

digits Grade 7 is a comprehensive curriculum, designed to be taught over the course of a full school year. This Year-Long Curriculum Guide offers a suggested pacing for the course. The suggested number of days for each topic is based on a 45-minute class period. The number of days spent on each topic will vary from class to class and from year to year depending on the learning needs of the students.

August/September
Topic 1: Ratios and Rates
Pacing: 9 days
Focus Concepts/Skills: unit rates; solving problems involving ratios and rates
Key Math Terms: ratio, terms of a ratio, equivalent ratios, unit rate, unit price, least common multiple
Topic 2: Proportional Relationships
Pacing: 9 days
Focus Concepts/Skills: recognizing and representing proportional relationships; identifying a constant of proportionality; solving problems involving scale drawings
Key Math Terms: proportional relationship, constant of proportionality, dependent variable, independent variable, scale drawing

October
Topic 3: Percents
Pacing: 11 days
Focus Concepts/Skills: solving mathematical and real-world problems involving percents; simple interest; compound interest
Key Math Terms: commission, interest, simple interest, compound interest, markup, markdown, percent of increase, percent of decrease
Topic 4: Adding and Subtracting Rational Numbers

Pacing: 11 days
Focus Concepts/Skills: adding and subtracting rational numbers; absolute value

Key Math Terms: absolute value, integers, rational numbers, whole numbers, additive inverses

November

Topic 5: Multiplying and Dividing Rational Numbers

Pacing: 9 days
Focus Concepts/Skills: multiplying and dividing rational numbers

Key Math Terms: reciprocals, complex fraction

Topic 6: Decimals and Percents

Pacing: 11 days
Focus Concepts/Skills: repeating and terminating decimals; percents greater than 100 and less than 1; percent error

Key Math Terms: repeating decimals, terminating decimals, percent error

December	January	February
Topic 7: Equivalent Expressions	Topic 8: Equations	Topic: 10 Angles
Pacing: 9 days	Pacing: 8 days	Pacing: 10 days
Focus Concepts/Skills: add, subtract, factor, and expand algebraic expressions	Focus Concepts/Skills: writing and solving two-step equations	Focus Concepts/Skills: acute angles; obtuse angles; right angles; straight angles; adjacent angles; complementary and supplementary angles; solving problems involving angle measures
Key Math Terms: expand an algebraic expression, like terms, factor an algebraic expression, coefficients, constants, simplify an algebraic expression	Key Math Terms: isolate, two-step equation	Key Math Terms: angle, vertex of an angle, straight angle, obtuse angle, right angle, acute angle, adjacent angles, complementary angles, supplementary angles, vertical angles
Winter Break	Topic 9: Inequalities	Topic 11: Circles
	Pacing: 9 days	Pacing: 8 days
	Focus Concepts/Skills: writing and solving inequalities	Focus Concepts/Skills: circles; solving problems involving the area and circumference of circles
	Key Math Terms: inequality, solution of an inequality, solution set, equivalent inequalities	Key Math Terms: circle, center of a circle, radius, diameter, circumference of a circle, area of a circle

Grade 7 Year-Long Curriculum Guide continued

March	April	May
Topic 12: 2- and 3-Dimensional Shapes	Topic 14: Sampling	Topic 16: Probability Concepts
Pacing: 9 days	Pacing: 11 days	Pacing: 10 days
Focus Concepts/Skills: constructing triangles given certain conditions; describing cross-sections of 3-D figures	Focus Concepts/Skills: sampling methods; drawing inferences about a population; generalizing about a population	Focus Concepts/Skills: probability models; experimental and theoretical probabilities of simple events
Key Math Terms: quadrilateral, parallel, perpendicular, included side, included angle, net, pyramid, cross-section	Key Math Terms: population, sample of a population, representative sample, biased sample, inference, valid inference, convenience sampling, systematic sampling, simple random sampling	Key Math Terms: probability of an event, outcome, sample space, event, relative frequency, experimental probability, theoretical probability, probability model, uniform probability model
Topic 13: Surface Area and Volume	Topic 15: Comparing Two Populations	Topic 17: Compound Events
Pacing: 9 days	Pacing: 10 days	Pacing: 11 days
Focus Concepts/Skills: solving surface area and volume problems involving right prisms and right pyramids	Focus Concepts/Skills: measures of center; measures of variability	Focus Concepts/Skills: find theoretical and experimental probabilities of compound events; use simulations to find probabilities
Key Math Terms: lateral area of a prism, surface area of a prism, prism, lateral face, volume of a prism, volume of a cube, pyramid, height of a pyramid, lateral area of a pyramid, surface area of a pyramid, slant height of a pyramid, volume of a pyramid	Key Math Terms: median, mean, range, interquartile range, comparative inference, mean absolute deviation	Key Math Terms: action, compound event, independent events, dependent events, sample space, the Counting Principle

Grade 8

Year-Long Curriculum Guide

digits Grade 8 is a comprehensive curriculum, designed to be taught over the course of a full school year. This Year-Long Curriculum Guide offers a suggested pacing for the teaching the entire course. The suggested number of days for each topic is based on a 45 minute class period. The number of days spent on each topic will vary from class to class and from year to year depending on the learning needs of the students.

October	November		
Topic 3: Integer Exponents	Topic 5: Proportional Relationships, Lines, and Linear Equations		
Pacing: 10 days	Pacing: 10 days		
Focus Concepts/Skills: radicals; integer exponents	Focus Concepts/Skills: graphing proportional relationships; writing and graphing linear equations		
Key Math Terms: perfect square, square root, perfect cube, cube root, power of a power, power of a product, power of a quotient, Zero Exponent Property, Negative	Key Math Terms: linear equation, slope of a line, y-intercept, slope-intercept form		
Exponent Property		\quad	Topic 4: Scientific Notation
:---			

Grade 8 Year-Long Curriculum Guide continued

December	January	February
Topic 7: Defining and Comparing Functions	Topic 8: Linear Functions	Topic 10: Similarity
Pacing: 11 days	Pacing: 10 days	Pacing: 7 days
Focus Concepts/Skills: linear and nonlinear functions; identifying functions using mapping diagrams and the vertical-line test; rate of change	Focus Concepts/Skills: linear functions; constructing linear functions to model real-world situations	Focus Concepts/Skills: similar figures; dilations; relating similar triangles and slope; solving problems using indirect measure
Key Math Terms: relation, function, input, output, mapping diagram, vertical line test, rate of change, linear function, nonlinear function, interval	Key Math Terms: linear function, linear function rule, rate of change, initial value, dependent variable, independent variable	Key Math Terms: dilation, enlargement, reduction, scale factor, similar figures, indirect measurement, scale drawing
Winter Break	Topic 9: Congruence	Topic 11: Reasoning in Geometry
	Pacing: 9 days	Pacing: 9 days
	Focus Concepts/Skills: transformations; rigid motions; congruence	Focus Concepts/Skills: angles formed by two parallel lines cut by a transversal; interior and exterior angles of a triangle; angle-angle triangle similarity
	Key Math Terms: image, rigid motion, transformation, translation, line of reflection, reflection, angle of rotation, center of rotation, rotation, congruent figures	Key Math Terms: transversal, corresponding angles, alternate interior angles, deductive reasoning, exterior angle of a triangle, remote interior angles

March	April	May
Topic 12: Using the Pythagorean Theorem	Topic 14: Scatter Plots	Topic 15: Analyzing Categorical Data
Pacing: 9 days	Pacing: 11 days	Pacing: 11 days
Focus Concepts/Skills: Pythagorean Theorem; Converse of the Pythagorean Theorem	Focus Concepts/Skills: constructing and interpreting scatter plots; finding an equation of a line of best fit for a scatter plot	Focus Concepts/Skills: two-way relative frequency tables; investigating patterns of association in bivariate categorical data
Key Math Terms: proof, theorem, leg of a right triangle, hypotenuse, Pythagorean Theorem, Converse of the Pythagorean Theorem	Key Math Terms: scatter plot, cluster, gap, outlier, trend line, median-median line	Key Math Terms: bivariate data, categorical data, bivariate categorical data, measurement data, two-way frequency table, two-way table, two-way relative frequency table
Topic 13: Surface Area and Volume		
Pacing: 11 days		
Focus Concepts/Skills: solving surface area and volume problems involving cylinders, cones, and spheres		
Key Math Terms: cylinder, lateral area of a cylinder, surface area of a cylinder, volume of a cylinder, cone, lateral area of a cone, surface area of a cone, volume of a cone, sphere, surface area of a sphere, volume of a sphere		

Accelerated Grade 7
 Year-Long Curriculum Guide

digits Accelerated Grade 7 is a comprehensive curriculum, designed to be taught over the course of a full school year. This Year-Long Curriculum Guide offers a suggested pacing for the teaching of the course. The suggested number of days for each topic is based on a 45-minute class period. The number of days spent on each topic will vary from class to class and from year to year depending on the learning needs of the students.

August/September
Topic 1: Adding and Subtracting Rational Numbers
Pacing: 7 days
Focus Concepts/Skills: adding and subtracting rational numbers; absolute value
Key Math Terms: absolute value, integers, rational numbers, whole numbers, additive inverses
Topic 2: Multiplying and Dividing Rational Numbers
Pacing: 5 days
Focus Concepts/Skills: multiplying and dividing rational numbers
Key Math Terms: reciprocals, complex fraction
Topic 3: Decimals and Percents
Pacing: 5 days
Focus Concepts/Skills: repeating and terminating decimals; percents greater than 100 and less than 1; percent error
Focus Concepts/Skills: repeating decimals, terminating decimals, percent error

Pacing: 5 days

Focus Concepts/Skills:

 approximating irrational numbers; ordering rational and irrational numbersKey Math Terms: irrational number, perfect square, real numbers, square root

Topic 5: Integer Exponents

Pacing: 8 days
Focus Concepts/Skills: radicals; integer exponents

Key Math Terms: perfect cube, cube root, power of a power, power of a product, power of a quotient, Zero Exponent Property, Negative Exponent Property

Topic 6: Scientific Notation

Pacing: 6 days
Focus Concepts/Skills:
expressing numbers in scientific notation; solving problems involving scientific notation

Focus Concepts/Skills: scientific notation, standard form

November
 Topic 7: Ratios and Rates
 Pacing: 7 days
 Focus Concepts/Skills: unit rates; solving problems involving ratios and rates

Key Math Terms: ratio, terms of a ratio, equivalent ratios, unit rate, unit price, least common multiple

Topic 8: Proportional Relationships

Pacing: 7 days
Focus Concepts/Skills: recognizing and representing proportional relationships; identifying a constant of proportionality; solving problems involving scale drawings

Key Math Terms: proportional relationship, constant of proportionality, dependent variable, independent variables, scale drawing

Topic 9: Percents

Pacing: 8 days

Focus Concepts/Skills:

solving mathematical and real-world problems involving percents; simple interest; compound interest

Focus Concepts/Skills: commission, interest, simple interest, compound interest, markup, markdown, percent of increase, percent of decrease

December	January	February
Topic 10: Equivalent Expressions	Topic 12: Linear Equations in One Variable	Topic 15: Sampling
Pacing: 6 days	Pacing: 5 days	Pacing: 9 days
Focus Concepts/Skills: add, subtract, factor, and expand algebraic expressions	Focus Concepts/Skills: solving multi-step equations; solving equations with variables on both sides of the equal sign	Focus Concepts/Skills: sampling methods; drawing inferences about a population; generalizing about a population
Key Math Terms: expand an algebraic expression, like terms, factor an algebraic expression, coefficients, constants, simplify an algebraic expression	Key Math Terms: like terms, Distributive Property, least common multiple, no solution, infinitely many solutions	Key Math Terms: population, sample of a population, representative sample, biased sample, inference, valid inference, convenience sampling, systematic sampling, simple random sampling
Topic 11: Equations	Topic 13: Inequalities	Topic 16: Comparing Two Populations
Pacing: 3 days	Pacing: 5 days	Pacing: 6 days
Focus Concepts/Skills: writing and solving two-step equations	Focus Concepts/Skills: writing and solving inequalities	Focus Concepts/Skills: measures of center; measures of variability
Key Math Terms: isolate, two-step equation	Key Math Terms: inequality, solution of an inequality, solution set, equivalent inequalities	Key Math Terms: median, mean, range, interquartile range, comparative inference, mean absolute deviation
Winter Break	Topic 14: Proportional Relationships, Lines, and Linear Equations	Topic 17: Probability Concepts
	Pacing: 9 days	Pacing: 7 days
	Focus Concepts/Skills: graphing proportional relationships; writing and graphing linear equations	Focus Concepts/Skills: probability models; experimental and theoretical probabilities of simple events
	Key Math Terms: linear equation, slope of a line, y-intercept, slope-intercept form	Key Math Terms: probability of an event, outcome, sample space, event, relative frequency, experimental probability, theoretical probability, probability model, uniform probability model

Accelerated Grade 7 Year-Long Curriculum Guide continued

March	April	May
Topic 18: Compound Events	Topic 21: 2- and 3-Dimensional Shapes	Topic 24: Similarity
Pacing: 9 days	Pacing: 5 days	Pacing: 5 days
Focus Concepts/Skills: theoretical and experimental probabilities of compound events; using simulations to find probabilities	Focus Concepts/Skills: constructing triangles given certain conditions; describing cross-sections of 3-D figures	Focus Concepts/Skills: similar figures; dilations; relating similar triangles and slope
Key Math Terms: action, compound event, independent events, dependent events, sample space, the Counting Principle	Key Math Terms: quadrilateral, parallel, perpendicular, included side, included angle, net, pyramid, cross-section	Key Math Terms: dilation, enlargement, reduction, scale factor, similar figures, indirect measurement, scale drawing
Topic 19: Angles	Topic 22: Surface Area and Volume	Topic 25: Reasoning in Geometry
Pacing: 6 days	Pacing: 6 days	Pacing: 7 days
Focus Concepts/Skills: acute angles; obtuse angles; right angles; straight angles; adjacent angles; complementary and supplementary angles; solving problems involving angle measures	Focus Concepts/Skills: solving surface area and volume problems involving right prisms and right pyramids	Focus Concepts/Skills: angles formed by two parallel lines cut by a transversal; interior and exterior angles of a triangle; angle-angle triangle similarity
Key Math Terms: angle, vertex of an angle, straight angle, obtuse angle, right angle, acute angle, adjacent angles, complementary angles, supplementary angles, vertical angles	Key Math Terms: lateral area of a prism, surface area of a prism, prism, lateral face, volume of a prism, volume of a cube, pyramid, height of a pyramid, lateral area of a pyramid, surface area of a pyramid, slant height of a pyramid, volume of a pyramid	Key Math Terms: transversal, corresponding angles, alternate interior angles, deductive reasoning, exterior angle of a triangle, remote interior angles
Topic 20: Circles	Topic 23: Congruence	Topic 26: Surface Area and Volume
Pacing: 5 days	Pacing: 7 days	Pacing: 6 days
Focus Concepts/Skills: circles; solving problems involving the area and circumference of circles	Focus Concepts/Skills: transformations; rigid motions; congruence	Focus Concepts/Skills: solving volume and surface area problems involving cylinders, cones, and spheres
Key Math Terms: circle, center of a circle, radius, diameter, circumference of a circle, area of a circle	Key Math Terms: image, rigid motion, transformation, translation, line of reflection, reflection, angle of rotation, center of rotation, rotation, congruent figures	Key Math Terms: cylinder, lateral area of a cylinder, surface area of a cylinder, volume of a cylinder, cone, lateral area of a cone, surface area of a cone, volume of a cone, sphere, surface area of a sphere, volume of a sphere

Progress Monitoring

Homework and Practice

Homework and practice in digits is powered by MathXL for School, an awardwinning program used by over 5 million students nationwide. Assignments are differentiated according to the results of the Readiness Assessment. Students with prerequisite deficiencies are provided with supportive practice problems that help develop mathematical thinking and students with little or no deficiencies are provided additional challenge to extend their understanding. Homework has 2 parts: Lesson Practice and Mixed Review. Lesson practice includes problems that support the instruction of the corresponding lesson. Mixed Review contains exercises that address previously taught content.

The homework and practice in digits provides teachers with daily formative assessment data to drive instruction. Because teachers can view results, they can adapt instruction for the very next lesson. Paired with the lesson's Close and Check, teachers have both qualitative student data with work shown in the Student Companion and quantitative student data with homework and practice results tabulated in the gradebook.

Homework online includes learning aids and auto-reporting. The learning aids have been shown to have significant impact on student performance. Powered by MathXL, digits learning aids include access to another example that is similar to the assigned problem, and an ability to step out the problem.

Assessments

Diagnostic assessments include a Beginning of Year test as well as Readiness Assessments at the start of each unit.

Summative assessments in digits are comprehensive.Topic Tests assess a collection of related lessons
(Unit Tests assess a group of related topicsMid-year Test assesses the first half of the course
(Full-year Test assess the entire course

Additionally, Topic Tests are available with or without study plans. The Topic Test Study Plan will assign to students a review of the Key Concepts associated to the assessment items answered incorrectly.

Four benchmark assessments are also available to measure students' progress against grade-level standards.

Assessing the Standards for Mathematical Practice

The rubric on the following pages can help teachers to assess their students' progress towards becoming proficient mathematical thinkers. The rubric is based on the Standards for Mathematical Practice and can be used as a formative assessment tool to monitor students' progress towards becoming proficient mathematical thinkers.

Rubric For Formative Assessment

Sense-Making and Solution Plan MP1, MP6

Student's solution suggests a thorough understanding of the problem situation and the mathematics required to solve the problem. The solution plan presented suggests a comprehensive understanding of the mathematical concepts required to solve the problem.

Student's solution suggests an adequate understanding of the problem situation and the mathematics required to solve the problem. The solution plan suggests a tentative understanding of the mathematical concepts required to solve the problem.

Student's solution suggests minimal understanding of the problem situation and the mathematics required to solve the problem. The solution plan presented suggests no understanding of the mathematical concepts required to solve the problem.

Reasoning and Argumentation MP2, MP3

Student's explanations show logical and appropriate connections among concepts; they also show the thinking of a highly proficient problem-solver. Student defends claims with well-reasoned, valid, and thoughtful arguments.

Student's explanations show some appropriate connections among concepts; they also show the thinking of a good problem-solver. Student defends claims with valid and appropriate arguments.

Student's explanations show limited connections among concepts; they also show the thinking of an underdeveloped problem-solver. Student presents weak arguments to defend claims.

Student's explanations show minimal connections among concepts; they also show the thinking of an inefficient problem-solver. Student minimally defends claims; arguments are not grounded in mathematical understanding.

Student's explanations show no connections among concepts; they also show the thinking of an ineffective problem-solver. Student is unable to defend claims.

Throughout digits there are many opportunities to students to demonstrate their progress towards becoming proficient mathematical thinkers. Teachers may want to use this rubric to assess students' answers to a Launch, Close and Check exercises in the Student Companion, or a Pull It All Together. Teachers may also want to use this rubric to assess students' written answers to homework such as Reasoning, Error Analysis, or Open-Ended exercises. Teachers can use this rubric to track students' progress throughout the year and adjust teaching to help students develop their mathematical thinking.

Models MP4, MP5

Student's solution shows relevant and appropriate mathematical modeling of the problem situation. Student proposes and uses tools that suggest comprehensive understanding of math concepts.

Student's solution shows appropriate mathematical modeling of the problem situation. Student proposes and uses appropriate tools.

Student's solution shows limited, but appropriate mathematical modeling of the problem situation. Student proposes and uses tools, but does not adequately justify or explain their use.

Student's solution shows limited and at time inappropriate mathematical modeling of the problem situation. Student proposes and uses tools that are minimally relevant to the problem situation.

Student's solution shows no mathematical modeling of the problem situation. Student proposes and uses tools that are not appropriate to solve the problem situation or student does not propose tools.

Precision MP6

Student's solution and explanation shows precise and appropriate mathematical terminology and notation.

Student's solution and explanation show appropriate mathematical terminology and notation.

Structure of Mathematics MP7, MP8

Student's explanation suggests a deep understanding of concepts and the structure of mathematics.

Student's explanation suggests an adequate understanding of concepts and the structure of mathematics.

Student's explanation suggests a limited understanding of concepts and the structure of mathematics.

Student's explanation suggests a minimal understanding of concepts and the structure of mathematics.

Student's solution and explanation shows an absence of mathematical terminology and notation.

Student's solution and explanation shows some imprecision or errors in use of mathematical terminology and notation.

Student's solution and explanation shows many errors in the use of mathematical terminology and notation.

Student's explanation suggests no understanding of concepts and/or the structure of mathematics.

Components

Components in digits are streamlined to minimize materials management.

During class, teachers access and present the digital lessons through the online teacher site MathDashboard.com/digits, or from the Teacher Resources DVD-ROM while students utilize their Write-in Student Companions.

Outside of class, teachers complete planning activities, manage student assignments, and review student performance through the online teacher site MathDashboard.com/digits. Students access differentiated homework through the online student site www.MyMathUniverse.com. Students can reference class lessons on the website as well as through the Write-in Student Companion. Students also access their personal study plans through the online student site.

Please see the table on the opposite page for additional details.

Student Package	Teacher Package
MyMathUniverse.com	MathDashboard.com/digits
class lessons differentiated homework personal study plan automatic software updates - performance improvements - feature enhancements digital content updates - state standards revisions - other revisions or additions	class lessons lesson planning tools student and assignment management tools assessment and data management tools automatic software updates - performance improvements - feature enhancements digital content updates - state standards revisions - other revisions or additions
Write-in Student Companion	Resource Kit
approximately four worktext pages per on-level lesson approximately two worktext pages per on-level topic review annual printed content updates - state standards revisions - other revisions or additions	Program Overview Guide Teacher Resources DVD-ROM - class lessons - lesson plans - reproducible masters - answer keys

Differentiating Instruction

Instruction in digits is automatically differentiated with Readiness Lessons designed for small groups, daily differentiated homework, and Intervention Lessons assigned through personalized study plans. All differentiation is driven by the results of the Readiness Assessments.

Learner Levels and Study Plans

The Readiness Assessment determines a student's proficiency with pre-requisite content for a unit of instruction. The overall score sets the student's Learner Level for the unit. By default, the Learner Level threshold is 70%. Students with scores at or above 70% are identified as proficient with the pre-requisite content and are assigned G for the Learner Level. Students with scores below 70% are identified as weak with the pre-requisite content and are assigned K for the Learner Level. Teachers can change the Learner Level threshold if desired. Additionally, teachers can change an individual student's Learner Level assignment.

The Learner Level is used to determine how to group students for the Readiness Lesson. The teacher provides pre-requisite instruction to students assigned the K Learner Level (and may include G Learner Level students as well) and distributes the Readiness Lesson activity sheets according to the Learner Level assignments.

The Learner Level also enables the automatic assignment of differentiated online homework throughout the unit. Students assigned the G Learner Level automatically receive homework that includes exercises with increased challenge. Students assigned the K Learner Level automatically receive homework that includes exercises that help them develop mathematical thinking.

In addition to setting the Learner Levels, the Readiness Assessment data is also evaluated to identify specific areas of prerequisite weakness for each student. Personalized study plans with intervention content are generated according to this evaluation.

The Learner Level Settings can be reviewed and modified through the gradebook. If the Readiness Assessment is not assigned to students, all students are assigned to Learner Level G.

Delivering Readiness Lessons

Prior to delivering the Readiness Lesson, teachers should review the Learner Level assignments for the class, group students accordingly, and duplicate the appropriate quantities of G and K Activity Sheets. Students assigned the K Learner Level should be situated together in close proximity to the interactive whiteboard or screen.

The Readiness Lesson has three major parts: Intro, Learn, and Close. The Intro and Close are whole class exchanges, whereas Learn provides additional instruction on the unit's pre-requisites for students assigned Learner Level K. Teachers may use the Learn section with the whole class if desired.

During the Intro, a real-world context is established, including its relationship to math, and the lesson's activity is introduced. Students have the opportunity to ask questions about the activity and share personal experiences related to the context. After reviewing the activity, the teacher distributes the activity sheets according to the Learner Level assignments. Students assigned the K Learner Level continue on to the Learn segment of the lesson with the teacher. Students assigned the G Learner Level may also work with the teacher, or they may begin work independently or in pairs on their activity sheets.

Learn provides additional explicit instruction on the pre-requisite content. Examples illustrate the use of various mathematical concepts and skills in the world context of the lesson. Teachers can model solutions, invite students to the board to solve using various strategies, or display fully worked out solutions.

After working through the examples, students work independently or in pairs within their Learner Level group on their activity sheets. Since students assigned the G Learner Level demonstrated proficiency on the pre-requisite content, the G activity sheet focuses on extending students' understanding with additional challenge. The K activity sheet provides additional scaffolding to support students with weakness in the pre-requisite content.

Representing Fractions

4. A band is making its setlist for a concert using the types of songs shown below. What fraction of the songs are by other artists?

The whole class is brought together for the Close. Students share findings or solutions, discuss various strategies, and explain their reasoning. Because the real world context is common, all students are able to contribute and benefit from the discourse.

AOO

Students share and compare solutions and strategies and verbalize reasoning.

Team Reports

	Total Nomber	Finction of Plinylist Inme
Pop Songs		
Classic Rock Songs		
Commercials		

	Total Manter	Froction of Playlist Time
Pop Songs		
Classic Rock Songs		
Commercials		

Delivering Intervention Lessons

Intervention in digits is designed to support various implementation models. Intervention lessons can be completed by students independently or can be completed with the guidance of a teacher. Research indicates that students who are on grade level with occasional areas of weakness are able to complete intervention independently, whereas students with large gaps in understanding are best served with additional teacher guidance in a small group setting, such as in an intervention pull-out or a Title 1 class.

At the start of every unit, teachers should conference with each student to discuss the study plan and provide pacing guidance. Teachers may decide to provide students with incremental milestone dates to assist with pacing. To complete intervention lessons, students need to be online and have access to a printer. After students log in on My Math Universe, they can access an assigned Readiness Assessment. This assessment will generate a Study Plan with appropriate Intervention Lessons. Each Intervention Lesson has an accompanying Journal page, which provides students with a scaffolded resource to complete a Got It? for each example and to complete the Lesson Check. Students should print out the Journal page before entering the lesson.

Intervention Lessons have two parts: Examples and Lesson Check. The Examples provide explicit instruction, an opportunity to try a problem with scaffolding and a solution, and a Got It? problem to assess understanding.

The Lesson Check reviews the Key Concept and provides additional problems similar to the examples in the Do You Know How section, and questions that promote reasoning in the Do You Understand section.

900

Lesson Check

A) Complete the Lesson Check on your Journal page.

Key Concept

Places to the right of the decimal point are tenths, hundredths, and then thousandths.

With decimals and whole numbers, a digit in one place has ten times the value of that same digit in the place to its right.

Got It? for Part 3

1. A7 in the \qquad place has 10 times the value of a 7 in the tenths place.
2. A 2 in the \qquad place has 10 times the value of a 2 in the thousandths place.

Lesson Check

Do You Know HOW?

Write a decimal to represent the part of each grid that is shaded.
1.

Do You UNDERSTAND?
4. VOCABULARY What is a thousandth?
\qquad
5. REASONING A 5 in what place has 10 times the value of a 5 in the hundredths place?
6. REASOMMA

Every Intervention Lesson is paired with automatically graded practice exercises that provide teachers with quantitative data on students' understanding of the intervention content.

Assigning a Topic Test with Study Plan

Summative Topic Tests are available with and without study plans. When students take a Topic Test with study plan, they are assigned Key Concepts and additional practice from the lessons that cover any areas of weakness in the topic. Before assigning a Topic Test with study plan, teachers should examine students' work load to ensure that they are not overwhelmed with assignments.

Challenging Gifted Students

Enrichment activities in digits are provided at both the topic and unit level. These provide opportunities to further assess students' understanding of the math concepts of a unit using research and creativity. Each activity presents a situation or problem to investigate. The student is expected to organize, plan, research, write, and present his or her results. The presentation of results is an extended written response, supported by visuals that may take the form of a game, a model, an interactive whiteboard presentation, a poster, or brochure. Each enrichment activity has a student support page to describe the situation, provide guidelines for each stage of the activity, a project checklist as the activity is completed, and a place for students to reflect on their own work. The teacher support page offers prompting questions to introduce the activity, suggestions for implementation, supporting questions for key stages in the activity, and additional challenge activities to further expand the project. The enrichment activities were designed to support various implementation models. Students can complete enrichment activities independently, by working in groups, or as a whole-class project with the guidance of a teacher. There is also flexibility on the timing of the activities. Enrichment activities can be assigned at the start of a topic or unit or at any time during the work in the topic or unit.

Supporting English Language Learners

English Language Learners in the Math Classroom

English language learners share many characteristics with other students, but they also need support and scaffolding that are specific to them. Why? Because they represent a highly diverse population. They come from many home language backgrounds and cultures. They have a wide range of prior educational and numeracy experiences in their home languages. And they come to school with varying levels of English language proficiency and experience with mainstream U.S. culture.

Helping English language learners acquire content mastery is not enough. English language learners are also expected to participate in yearly high-stakes tests. Research has consistently shown that ELLs usually require at least five years, on average, to catch up to native-speaker norms in academic language proficiency (Cummins, 1981).

The following pages have been designed to help you identify and respond appropriately to the varying needs of ELLs in your classroom. They provide insight on how to help ELLs develop fluency as readers, writers, listeners, and speakers of academic English, while learning mathematical concepts at the same time. In addition, they offer strategies and activities to help you scaffold and support ELL instruction so that all your students can learn in ways that are comprehensible and meaningful, and in ways that promote academic success and achievement.

English Language Learners

Dr. Jim Cummins

Dr. Jim Cummins is Professor and Canada Research Chair in the Centre for Educational Research on Languages and Literacies, part of the Ontario Institute for Studies in Education of the University of Toronto. His research focuses on literacy development in multilingual school contexts as well as on the potential roles of technology in promoting language and literacy development. Jim is actively working on two books that (hopefully) will appear in 2011. One is tentatively titled Pedagogies of Choice for English Language Learners and the other Identity Texts: The Collaborative Creation of Power in Multilingual School Contexts.

Mathematics and Language

Mathematics can legitimately be considered a language in itself in that it employs symbols to represent concepts and operations that facilitate our thinking about aspects of reality. However, mathematics is also intimately related to the natural language that we begin to acquire as infants, the language that we use to communicate in a variety of everyday and academic contexts. Mathematics and language are interconnected at several levels:

- Teachers use natural language to explain mathematical concepts and perform mathematical operations. Students who have limited proficiency in English require additional support in order to understand mathematical concepts and operations taught in English. Among the supports that teachers can use to make instruction comprehensible for English learners are demonstrations using concrete, hands-on manipulatives; graphic organizers; simplification and paraphrasing of instructional language; and direct teaching of key vocabulary.
- As is the case in other academic disciplines, mathematics uses a specialized technical vocabulary to represent concepts and describe operations. Students are required to learn the meanings of such words as congruence, ratio, integer, and quotient, words that are likely to be found only in mathematics discourse. Furthermore, other terms have specific meanings in mathematics discourse that differ from their meanings in everyday usage and in other subject areas. Examples of these kinds of terms include words such as table, product, even, and odd. Homophones such as sum and some may also be confusing for ELL students. Grade 6 students are required to learn concepts such as least common multiple when ELL students may not know the broader meanings of the words least and common.
- In addition to the technical vocabulary of mathematics, language intersects with mathematics at the broader level of general vocabulary, syntax, semantics, and discourse. Most mathematical problems require students to understand propositions and logical relations that are expressed through language. Consider this problem at the Grade 6 level:

A baseball team won 36 games this season, 6 fewer games than last season. Solve the equation $n-6=36$ to find n, the number of games they won last season.

Here students need to understand (or be able to figure out) the meanings of such words as equation and season. They need to understand the logical relation expressed by the fewer ... than ... construction. And they need to infer that the team played more than 36 games last season, even though this fact is not explicitly included in the problem. Clearly, the language demands of the math curriculum increase as students progress through the grades, and these demands can cause particular difficulties for ELL students.

The Challenges of Academic Language

The intersection of language and content entails both challenges and opportunities in teaching English language learners. It is clearly challenging to teach complex math content to students whose knowledge of English academic language may be considerably below the level assumed by the curriculum and textbooks. In a typical math lesson, for example, several difficult words may be explained in the margins. However, there may be many more words in each lesson that are new to ELL students. These gaps in their knowledge of academic language are likely to seriously impede their understanding of the text.

Students may also be unfamiliar with grammatical constructions and typical conventions of academic writing that are present in the text. For example, academic texts frequently use passive voice, whereas we rarely use this construction in everyday conversation. Also, students are often given writing assignments to demonstrate their understanding.

- Clarify Language (Paraphrase Ideas, Enunciate Clearly, Adjust Speech Rate, and Simplify Sentences) This category includes a variety of strategies and language-oriented activities that clarify the meanings of new words and concepts. Teachers can modify their language to students by paraphrasing ideas and by explaining new concepts and words. They can explain new words by providing synonyms, antonyms, and definitions either in English or in the home language of students, if they know it. Important vocabulary can be repeated and recycled as part of the paraphrasing of ideas. Teachers should speak in a natural rhythm, but enunciate clearly and adjust their speech to a rate that ELL students will find easier to understand. Meaning can also be communicated and/or reinforced through gesture, body language, and demonstrations. Because of their common roots in Latin and Greek, much of the technical math vocabulary in English has cognates in Romance languages such as Spanish (e.g., addition—adición). Students who know these languages can be encouraged to make cross-linguistic linkages as a means of reinforcing the concept. Bilingual and English-only dictionaries can also be useful tools for language clarification, particularly for intermediate-grade students.
- Give Frequent Feedback and Expand Student Responses Giving frequent feedback means responding positively and naturally to all forms of responses. Teachers can let their students know how they are doing by responding to both their words and their actions. Teachers can also assess their students' understanding by asking them to give examples, or by asking them how they would explain a concept or idea to someone else. Expanding student responses often means using polar (either/or) questions with students who are just beginning to produce oral English and 5 W (who, what, when, where, why) questions with students who are more fluent. Teachers can easily, and casually, expand their students' one- and two-word answers into complete sentences ("Yes, a triangle has one base") and respond to grammatically incorrect answers by recasting them using standard English syntax (Student: "I gotted 4 and 19 thousandths"; Teacher: "That's right, you have 4 and 19 thousandths").

Opportunities for Extending Language

Content teachers are usually acutely aware of the challenges of teaching ELL students within the subject-matter classroom. However, they may be less aware of the opportunities that exist for extending students' knowledge of academic English. Students who are learning math are also learning the language of math. They are learning that there are predictable patterns in the ways we form abstract nouns that describe mathematical processes. For example, many of these nouns are formed by adding the suffix -tion to the verb, as in add/addition, estimate/estimation, etc.

Similarly, when students report back to the class on their observations of a problemsolving exercise or project, teachers have the opportunity to model the kinds of explicit formal language that is required to talk and write about mathematical operations. The feedback they provide to students on their oral or written assignments clarifies not only the mathematical concepts that students are learning but also the language forms, functions, and conventions that are required to discuss these concepts. Thus, math teachers are also language teachers and have significant opportunities to extend students' ability to understand and use academic language.

Without strong writing skills in English, ELL students will find it difficult to demonstrate content knowledge.

Obviously, teachers focus their instruction on explaining concepts to students, but ELL students may not yet have acquired the English proficiency to understand explanations that are accessible to native speakers of the language. Thus, a major challenge for teachers is to teach content effectively to all students, particularly those who are not yet fully proficient in English. Although this challenge is formidable, particularly at the intermediate level, teachers can draw on a knowledge base of recent research findings in order to implement instructional approaches that have proved highly effective in enabling ELL students to gain access to academic content.

\int The number of ELLs
has grown rapidly in the last
15 years to about $\mathbf{5}$ million
students. Estimates project this
number will increase $\mathbf{1 0 0 \%}$ to
10 million, by 2015.

-NEA 2008

Access Content

Activating and building students' background knowledge is an essential part of the process of helping students to participate academically and gain access to meaning. When we activate students' prior knowledge, we attempt to modify the "soil" so that the seeds of meaning can take root. However, we can also support or scaffold students' learning by modifying the input itself. We provide this scaffolding by embedding the content in a richly redundant context wherein there are multiple routes to the mathematical meaning at hand in addition to the language itself. The following list presents a variety of ways of modifying the presentation of mathematical content to ELL students so that they can more effectively get access to the meaning in any given lesson.

- Use Demonstration Teachers can take students through a word problem in math, demonstrating step-by-step procedures and strategies in a clear and explicit manner.
- Use Manipulatives (and Tools and Technology) In the early grades, manipulatives may include counters and blocks that enable students to carry out a mathematical operation, literally with their hands, and actually see the concrete results of that operation. At the intermediate level, measuring tools, such as rulers and protractors, and technological aids, such as calculators and computers, will be used. The effectiveness of these tools will be enhanced, if they are used within the context of a project that students are intrinsically motivated to initiate and complete.
- Use Small-Group Interactions and Peer Questioning Working either as a whole class or in heterogeneous groups or pairs, students can engage in real-life or simulated projects that require application of a variety of mathematical skills.
- Use Pictures, Real Objects, and Graphic Organizers We commonly hear the expression "A picture is worth a thousand words." There is a lot of truth to this when it comes to teaching academic content. Visuals enable students to "see" the basic concept we are trying to teach much more effectively than if we rely only on words. Once students grasp the concept, they are much more likely to be able to figure out the meanings of the words we use to talk about it. Among the visuals we can use in presenting math content are these: pictures/photographs, real objects, graphic organizers, drawings on overhead projectors, and blackline masters. Graphic organizers are particularly useful because they can be used not only by teachers to present concepts but also by students to take notes, organize their ideas in logical categories, and summarize the results of group brainstorming on particular issues.

The Knowledge Base

There is considerable agreement among researchers about the general patterns of academic development among ELL students and the factors that support students in catching up academically. The following findings are well-established:

The language of academic success in school is very different from the language we use in everyday conversational interactions. Face-to-face conversational interactions are supported by facial expressions, eye contact, gestures, intonation, and the immediate concrete context. Conversational interactions among native-speakers draw on a core set of high-frequency words (approximately 2,000) and use a limited set of grammatical constructions and discourse conventions. Academic language, by contrast, draws on a much larger set of low-frequency words, including both general academic words and the specific technical vocabulary of a particular content area (e.g., coordinate plane, triangular prism, etc.). This language is found predominantly in two places-classrooms and texts (both printed and electronic).

ELL students typically require at least five years to catch up academically to native speakers; by contrast, basic conversational fluency is usually acquired within 1-2 years. These trajectories reflect both the increased linguistic complexity of academic language and the fact that ELL students are attempting to catch up to a moving target. Students whose first language is English are not standing still waiting for ELL students to catch up. Every year, they make gains in reading, writing, and vocabulary abilities. So, ELL students have to learn faster to bridge the gap. The fact that at least five years is typically required for ELL students to catch up academically highlights the urgency of providing academic and linguistic support to students across the curriculum. Ideally, ELL teachers and subject-matter teachers will work together to enable ELL students to develop the academic language skills they need to access subject-matter content and succeed academically.

All learning builds on a foundation of preexisting knowledge and skills. For ELL students in the early stages of learning English, this conceptual foundation is likely to be encoded predominantly in their home language (L1). This finding implies that students' L1 is potentially relevant to learning English academic skills and concepts. Students' L1 is the cognitive tool they have used to interact with the world and learn academic content. Thus, rather than ignoring students' L1, we should consider teaching for transfer across languages and encourage students to use their L1 as a stepping stone to higher performance in English academic tasks.

The Savvas ELL Curriculum Framework

The core principles of teaching ELL students across the curriculum are outlined in The Savvas ELL Curriculum Framework. This framework was designed to assist content-area teachers in addressing the needs of the growing and diverse English language learner population. The five principles in the outer circle of the framework represent the ways in which the teacher plans and organizes the delivery of instruction. The three processes in the inner circle highlight what teachers attempt to do in direct interaction with their students. As depicted in the diagram, these principles and processes flow into each other and represent components or phases of a dynamic whole.

1
 Identify and Communicate Content and Language Objectives

 In planning and organizing a lesson, teachers must first identify what content and language objectives they will attempt to communicate to students.
(2) Frontload the Lesson

Frontloading refers to the use of prereading or preinstructional strategies that prepare English language learners to understand new academic content. It involves strategies such as activating prior knowledge, building background, previewing text, preteaching vocabulary, and making connections.

(3) Provide Comprehensible Input

Language and content that students can understand is referred to as comprehensible input. Teachers make use of nonlinguistic supports to enable students to understand language and content that would otherwise have been beyond their comprehension. Typical supports or "scaffolds" include graphic organizers, photographs, illustrations, models, demonstrations, outlines, etc. Language clarification and use of paraphrasing also contribute to making the input comprehensible.
(4) Enable Language Production Language production complements comprehensible input and is an essential element in developing expertise in academic language. Use of both oral and written language enables students to solve problems, generate insights, express their ideas and identities, and obtain feedback from teachers and peers.

(5) Assess for Content and Language

 Understanding Finally, the instructional cycle flows into assessing what students have learned and then spiraling upwards into further development of students' content knowledge and language expertise.
Classroom Interactions

When we shift into the actual classroom interactions that this lesson cycle generates, a primary focus is on the extent to which teachers' interactions with students motivate them to engage academically. Promotion of motivation and engagement represents a process of negotiating identities between teachers and students. Students who feel their culture and personal identity validated in the classroom are much more likely to engage with academic content than those who perceive that their culture and identity are ignored or devalued.

Differentiation of instruction is widely accepted as necessary to address the learning needs of a diverse school population. One-size-fits-all programs typically exclude ELL students from meaningful participation. When applied to ELL students, differentiation involves scaffolding of input to students and output from students. Activating prior knowledge and building background knowledge is one example of a differentiation/scaffolding strategy.

Assessment and intervention are fused into the cycle of motivating students and providing differentiated instruction that addresses the background knowledge and learning needs of individual students. It is essential that teachers regularly assess the extent to which ELL students understand the content presented through classroom instruction and in the textbook. If not, many students who are still in the process of learning academic English may grasp only a fraction of this content. This formative assessment represents an ongoing process in the classroom and gives the teacher information that is relevant to intervention and further scaffolding of instruction.

Conclusion

The knowledge base that research has generated about ELL students' academic trajectories shows clearly that ELL students must be understanding instruction and learning English across the curriculum if they are to catch up in time to meet graduation requirements. Teaching mathematics affords opportunities for extending ELL students' academic language proficiency. The Savvas ELL Curriculum Framework incorporates the essential elements that teachers need to implement effective instruction for all students-English-language and native English-speaking learners alike.

Additional Savvas Resources

For additional and concentrated vocabulary support for ELLs and struggling students, schools might be interested in Pearson's Language Central for Math. This program was specifically developed by educators to provide better mathematics access to their ELL students. It incorporates the ELL instructional framework developed by Dr. Jim Cummins. Language Central for Math helps ELLs and struggling students in Grades 6-8 develop the academic vocabulary necessary to master math.

References for Foundational Research

Anthony, A.R. (2008). Output strategies for English language learners: Theory to Practice. The Reading Teacher, 61(6), 472-482.

August, D., \& Shanahan, T. (Eds.) (2006). Developing literacy in second-language learners: Report of the National Literacy Panel on Language-Minority Children and Youth. Executive Summary.

Barrera, R.B., \& Jimenez, R.T. (2000). Literacy instruction for bilingual Latino students: Teachers' experiences and knowledge. Office for Bilingual Education and Minority Language Affairs, Washington, DC.

Beilenberg, B., \& Fillmore, L.W. (2004). The English they need for the test. Educational Leadership, 62(4), 45-49.

Collier, V. \& Thomas, W. (2002). A national study of school effectiveness for language minority students' long-term academic achievement. Santa Cruz, CA \& Washington, DC: Center for Research on Education, Diversity \& Excellence. Available: http://www.crede. ucsc.edu/research/llaa/1.1_final.html.

Cummins, J. (2005). Affirming identity in multilingual classrooms. Educational Leadership, 63(1), 38-43.

Cummins, J. (2005). A proposal for action: Strategies for recognizing heritage language competence as a learning resource within the mainstream classroom. The Modern Language Journal, 89, 585-592.

Cummins, J. (1999). BICS and CALP: Clarifying the distinction. Working papers on bilingualism, 20.

Cummins, J. (1981). The role of primary language development in promoting educational success for language minority students. In Schooling and language minority students: A theoretical framework. Sacramento, CA: California Department of Education.

Fillmore, L.W. (2007). English learners and mathematics learning: Language issues to consider. In Assessing mathematical proficiency. MSRI Publications, Vol 53. library.msri.org/books/Book53/files/19fillmore.pdf

Fillmore, L.W. \& Snow, C.E. (2000). What teachers need to know about language. ERIC Special Report.

Garcia, G.E. (1992). The literacy assessment of secondlanguage learners. Center for the Study of Reading, University of Illinois Urbana-Champaign. Available on ERIC.

Garcia, G.E. (1994). Supporting second-language literacy: Enhancing the English literacy development of students who are learning English as a second language. Illinois Reading Council Journal. 22(1). Special Supplement.

Garcia, G.E. \& Bauer, E.B. (2002). Lessons from a classroom teacher's use of alternative literacy assessment. Research in the Teaching of English, 36(May).

Garcia, G.E. \& Godina, H. (1994). Bilingual preschool children's participation in classroom literacy activities: "Once Upon a Time" and its alternatives. Paper presented at the Annual Meeting of the National Reading Conference.

Garcia, G.E. \& McCarthy, S.J. (2005). English language learners writing practices and attitudes. Written Communication, 22(1).

Garcia, G.E. \& Savvas, P.D. (1990). Modifying reading instruction to maximize its effectiveness for all students. Technical Report \#489. Center for the Study of Reading, University of Illinois Urbana-Champaign.

Jimenez, R.T. (2002). Key research, policy, and practice issues for fostering the literacy development of Latino students. Focus on Exceptional Children, 34(6), 1-10.

Jimenez, R.T., Garcia, G.E., \& Savvas, P.D. (1996). The reading strategies of bilingual Latino/a students who are successful English readers: Opportunities and obstacles. Reading Research Quarterly, 31(1), 90-106.

Kieffer, M.J. \& Lesaux, N.K. (2007). Breaking down words to build meaning: Morphology, vocabulary, and reading comprehension in the urban classroom. The Reading Teacher, 61, 134-144.

Leos, K., (2004). No child left behind. Paper presented at the annual conference of the National Association for Bilingual Education, Albuquerque, NM.

National Clearinghouse for English Language Acquisition, (2008). Educating English language learners: Building teacher capacity. Washington, DC: http//www.ncela. gwu.edu/practice/mainstream/volume_1.pdf.

National Clearinghouse for English Language Acquisition, (2008). How many school-aged limited English proficient (LEP) students are there in the U.S.? Washington, DC. http//www.ncela.gwu.edu/expert/faq/01leps. html.

National Education Association, (2008). Campaign Briefing Book. Washington, DC: http://educationvotes. nea.org/userfiles/08\ CampaignBrief-bw.pdf.

Schleppegrell, M. J., Achugar, M., \& Oteiza, (2004). The grammar of history: Enhancing content-based instruction through a functional focus on language. TESOL Quarterly, 38(1), 67-93.

Short, D., Crandall, J., \& Christian, D., (1989). How to integrate language and content instruction: A training manual. The Center for Applied Linguistics.

Short, D. \& Echevarria, J. (2004). Teacher skills to support English language learners. Educational Leadership 62(4).

Five Essential Principles for Building ELL Lessons

PRINCIPLE 1 Identify and Communicate Content and Language Objectives

Content Objectives

Effective educational practices, as well as state and federal mandates, require that English language learners meet grade-level standards. The first step in reaching these standards is clearly targeting and communicating the content objectives of a lesson. While the content objectives for English language learners are the same as for mainstream learners, the objectives must be presented in language that suits the students' levels of language proficiency. This involves using simpler sentence structures and vocabulary, paraphrasing, repeating, and avoiding idioms and slang.

Language Objectives

Language objectives focus on promoting English language development while learning content. They can be thought of as a scaffold to help students learn content objectives. Language objectives include: content vocabulary, academic vocabulary, and language form and function.

Content vocabulary These terms are the specialized vocabulary of a subject area. Content vocabulary can be particularly challenging for English language learners who come from a variety of school backgrounds. ELLs should receive explicit instruction of key vocabulary words. Studies show that with this instruction, students are more likely to understand new words encountered during reading.

Academic vocabulary These terms can be described as "school language," or the language that students encounter across all subjects as opposed to the informal English words and structures used in conversation. Academic vocabulary includes words such as similar, demonstrate, explain, and survey. Research indicates that acquiring a strong grasp of academic vocabulary is a vital factor distinguishing successful students from those who struggle in school. Becoming fluent in academic language will enable English language learners to understand and analyze, write clearly about their ideas, and comprehend subject-area material.

Language form and function Language forms include sentence structure and grammar. Language functions involve the purpose of language (such as identifying or comparing). The language forms and functions students need to complete academic tasks should be taught within the context of the lesson. To develop appropriate form and function objectives, teachers can use standards developed for ELLs or coordinate with staff who specialize in language development. For example, when teaching greater than/less than, the language objective might be the structures for comparison (-er and less) and the function of how to make comparisons.

Teaching Strategies and Support for Principle 1

There are a number of basic strategies teachers can implement to meet the needs of their English language learners. Many are commonsense, everyday strategies that teachers in all content areas already know and use. These strategies lay the foundation for a positive learning relationship between student and teacher.

Previous lesson objectives Begin each

 lesson with a review of the previous lesson's objectives.Content objectives Present the content objectives using visual aids, graphic organizers, and paraphrasing. Write the objectives on the board.Prior knowledge Ask students to talk about the content based on their prior knowledge. Document the results of the discussion with a graphic organizer.Content and academic vocabulary Present content and academic vocabulary.

- Pronounce the word and have students repeat.
- Provide examples, descriptions, visuals, and explanations.
- Clarify the part of speech and discuss cognates, synonyms, and antonyms.
- Ask students to provide examples, descriptions, visuals, and explanations of their own to determine comprehension.

Vocabulary notebooks Have students keep a vocabulary notebook. Suggest that they use their own words to define the terms and incorporate visuals whenever possible.

Word-analysis strategies Teach students word-analysis strategies so that new words can be attacked independently. For example, teach the prefix and the root of a vocabulary word. Write the meaning of the prefix and the root word on the board and have students do the same in their vocabulary notebooks.

Academic vocabulary practice Provide flashcards or flashcard frames for key academic vocabulary. Have students use them for paired or independent practice, both during the week and for subsequent reviews. Encourage students to add personal notes and pictures to their flashcards.

Vocabulary practice Design assignments so that students practice using the new words.

Language objectives With the cooperation of an ESOL teacher, provide language objectives at different proficiency levels.

Opportunities for language objectives If the lesson's content includes idioms or colloquialisms use these as opportunities to teach language objectives.

Lesson objectives review End each lesson with a review of the lesson's content and language objectives and a preview of the next lesson's objectives.

Applying Principle 1 in digits

In the Lessons Readiness lessons help teachers assess student preparedness, while other lessons introduce concepts and explain problem solving. Intervention lessons provide additional support. For each lesson, the Teacher Guide provides the lesson objectives. Present these objectives before beginning the lesson. If necessary, rewrite them in simpler language and post them on the board.

```
AOO
    Glossary
    digits.
        English F A.Z - SNow all hems-
        * 回
```


4 Absolute deviation from the mean

Absolute deviation measures the distance that the data value is from the mean. You find the absolute deviation by taking the absolute value of the deviation of a data value. Absolute deviations are always nonnegative.

Example
Data set: $\mathbf{0}, 1,1,2,2,2,2,3,3,5,5,10$. The absolute deviations of the values in the data set are:

The vocabulary words pertinent to the lesson content can be found by clicking on the \mathbb{O} button. For each term, a written definition, example, audio presentation, and Spanish version of the term is provided. Teachers should check understanding of these words by having students provide their own sentence or example.

In the Teacher Resources The lesson objectives and key vocabulary for each lesson are also included in the Lesson Plan.

1-1 Equivalent Ratios

Common Core State Standards: 7.RP.1: Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units.

In the Student Resources Student Companion pages provide the standards that are addressed at the beginning of each lesson. Readiness Activity Sheets box the key vocabulary at the beginning of each Readiness Lesson.

PRINCIPLE 2 Frontload the Lesson

Frontloading is the use of strategies that prepare English language learners to learn new material. The goal of frontloading is to reach all ELLs by lessening the cognitive and language loads, thereby allowing them to take control of their learning process.

Frontloading involves the use of the following strategies:

Activating prior knowledge Instruction is most effective when it links knowledge and experiences students already have to new concepts. Experiences can be academic, cultural, and personal. Teachers can help students see the relationships between their prior knowledge and the new lesson through direct questioning techniques, the use of visuals and graphic organizers, and discussion. The more students know about the topic of a lesson, the more they will understand.

Building background knowledge In order to make a lesson's content accessible to ELLs, teachers may need to familiarize them with social or cultural facts and concepts of which mainstream learners are already aware. These facts and concepts may be brought out during the activating prior knowledge phase or through direct questioning and instruction.

Previewing text Previewing text serves the purpose of familiarizing students with what is to come in a lesson and putting them at ease. To preview text, teachers focus more closely on using visual supports such while walking through a lesson. In addition, English language learners should be taught discrete skills that are required for successfully reading content-area texts, such as how to read and interpret charts, tables, and graphs.

Setting a purpose for reading Teachers should help students realize that good readers focus on the message of the text. Teaching ELLs in the content areas also includes explicit instruction in the kinds of text structures they will encounter in content-area readings. In addition, it includes teaching reading strategies such as identifying the main idea and details, summarizing, and comparing and contrasting.

Making connections Teachers can extend the lesson by helping students see relationships between the lesson and other aspects of their lives. Connections can be made to other academic subjects, to current events, or to cultural traditions. By incorporating aspects of students' primary language and culture, teachers can ease the transition toward learning the content and language.

Integral to these frontloading strategies is the need for teachers to learn about the backgrounds of the English language learners. Learning about an ELL's experiences validates the student's sense of identity, increases the teacher's knowledge, and broadens the horizons of the English-speaking students in the class.

Teaching Strategies and Support for Principle 2

Prior knowledge Determine English language learners' prior knowledge of a topic through a variety of activities. For example, have students:

- brainstorm aspects of the topic.
- construct a concept map.
- relate the topic to their personal lives through the use of examples.
- discuss a series of true-or-false statements.
- put steps of a process in a sequence chart.
- complete information in a chart.

Cultural background Because there may be cultural or societal factors with which English language learners are unfamiliar, teachers should learn about the background of these students. Teachers can then use this knowledge to determine what additional background knowledge (facts and concepts) need to be presented. For example, before teaching a lesson using baseball statistics, teachers may need to provide some students with an explanation of the types of statistics kept in baseball, and what they mean.

Lesson feature preview Preview the lesson by calling attention to key features: titles, visuals, captions, charts, bold or italicized words, and any special features.

Self-questioning strategies When

 previewing the lesson, students should be taught to ask themselves questions such as:- What do I think this lesson is about?
- What do I already know about this topic?
- What do the features tell me?

Predicting strategies Have students use predicting strategies. They can predict what a word problem is going to be about by looking at its title and features. Students should always confirm any predictions after reading.

Note-taking organizers Present a graphic organizer that students can use for taking notes. Show students how to use headings and subheadings to create an outline framework.

Set a purpose for reading Have students set a purpose for reading so they take active control of their learning. After previewing a passage, students should ask themselves questions such as:

- What is this passage about?
- What is my purpose for reading the passage?
- How does this passage relate to the topic?

Make connections At the end of a lesson, have students make a connection between what they have learned and with an aspect of their academic lives, or their personal lives. This activity can be done as a Think-Pair-Share exercise or in small groups.

Applying Principle 2 in digits

In the Lessons Opportunities for frontloading the lesson are built right into digits introductory presentations. The Launch or Intro features visuals, animations, and audio intended to spark students' interest in the lesson content. A host helps build background and presents the Focus Question, which can be used to informally determine what students know and whether they are ready to move on to new concepts. Themes are designed to connect to students' interests and life experience. Use the visuals, audio, and content to engage students in an introductory discussion. Guide them to talk about what they already know and to think about what they might learn.

The Teacher Guide that accompanies the lesson provides an explanation of how the presentation connects to student prior knowledge.

In the Teacher Resources Support for the Topic Essential Question and the Lesson Focus Question is found in the Lesson Plan of the Teacher Resources. It invites students to share prior experiences. It also provides a summary of the skills needed to successfully proceed with the lesson.

Overview/Materials

Essential Question for Topic

Comparisons are helpful for making plans, predictions, and decisions. What math models can you use for making comparisons? Which models are helpful in which situations?

Author Intent
Many comparisons involve differences and ratios. Students with a solid grounding on the skills of dividing whole numbers, representing fractions, and simplifying fractions will have more success when they go to apply these skills to work with ratios.

Students need to master the skill of dividing by whole numbers before they can attempt to make equivalent ratios by scaling down. The skills of representing and simplifying fractions become important in the lesson "Ratios as Fractions."

This lesson prepares students for the standard listed below.

PRINCIPLE 3
 Provide Comprehensible Input

Providing comprehensible input refers to making written and oral content accessible to English language learners, especially through the use of nonlinguistic supports.

Because English language learners are frequently overwhelmed by extraneous information and large blocks of text, they need help focusing on the most important concepts. With comprehensible input strategies, teachers make information and tasks clear by using step-by-step instructions, by making modifications to their speech, and by clearly defining objectives and expectations of the students.

Nonlinguistic supports teachers can use to accompany student reading include:

```
- photographs
- illustrations
- models
- cartoons
- graphs, charts, tables
- graphic organizers
```

Graphic organizers provide essential visual aids by showing at a glance the hierarchy and relationship of concepts.

Nonlinguistic supports teachers can use during class presentations include:

```
- gestures
- facial expressions
- props
- tone of voice
- realia (real-life visuals and objects)
- models
- demonstrations
```


Another effective form of comprehensible input is the "think-aloud," especially as modeled by the teacher. In a think-aloud, the teacher stops periodically and shares how to work out a problem by talking about his/her thought processes. The think-aloud shows how thinkers comprehend texts or solve difficult problems. ELLs can practice think-alouds, thereby learning to reflect and comprehend. Teachers can use the student's think-aloud to assess strengths and challenges.

A variety of comprehensible input techniques should be incorporated into lesson plans for English language learners as well as multiple exposures to new terms and concepts. Hands-on activities are particularly helpful to ELLs. The use of multimedia and other technologies will also enhance instruction.

Teaching Strategies and Support for Principle 3

Visuals Provide meaningful visuals for English language learners. These may include pictures, images, diagrams, graphs, standard graphic organizers (e.g., Venn diagrams, charts, and concept maps), and outlines (filled-in or cloze).

Multimedia Use a variety of media to reduce the reliance on language and place the information in a context that is more comprehensible.

- Bring realia (real-life objects) into the lessons. Have visual displays (graphs, charts, photos), objects, visitors, and authentic materials (newspaper and magazine clippings, etc.).
- Use video, audio, and CD/online interactive activities.

The five senses Use teaching techniques that involve the other senses. For example:

- When teaching about ratios, have students taste salt water mixtures with varying ratios of salt to water.
- When teaching perimeter, have students trace the outlines of the objects being measured.

Hands-on learning Provide hands-on experiences when appropriate to help students contextualize or personalize abstract concepts.

Demonstrations Provide demonstrations of how something works, whether it is concrete (such as locating a point on a coordinate grid) or conceptual (absolute value).

Role-playing Concepts can also be presented through role-playing or debates.Think-alouds Use think-alouds to model the kinds of question-asking strategies that students should use to construct meaning from mathematical problems. Remind students to use these questions and identify key mathematical vocabulary.

Delivery of instruction Providing comprehensible input also refers to the delivery of instruction. For example:

- Face students when speaking.
- Speak clearly and slowly.
- Pause frequently.
- Use gestures, tone of voice, facial expressions, and emphasis as appropriate.
- Avoid the use of idioms and slang.
- Say and write instructions.

Applying Principle 3 in digits

In the Lessons Every lesson includes engaging animation, audio, numerous images, charts, and tables that will help English language learners acquire knowledge and skills. All visuals are accompanied by text and audio questions and explanations to ensure that students understand the concepts.

In the Teacher Resources The Teacher Guide for each lesson provides questions to help guide students to understanding.

In the Student Resources Companion Pages, Readiness Activity Sheets, and the Intervention Journal all provide visuals and text that further support the lesson presentations. These resources step students through mathematical processes and provide graphic organizers and questions that help further understanding of key concepts.

PRINCIPLE 4 Enable Language Production

Enabling language production for English language learners encompasses the four skills of listening, speaking, reading, and writing.

Because the language used by teachers and in content-area textbooks and assessment is sufficiently different from everyday spoken language, English language learners find themselves at a disadvantage in the classroom. Acquiring academic language in all four skill areas is challenging and requires at least five years of exposure to academic English to catch up with native-speaker norms. Therefore, particular attention should be paid to expanding ELLs' academic language so that they can access the learning materials and achieve success.

Brain research has ascertained that people under stress have difficulty learning and retaining new concepts. Students with limited language are naturally highly stressed. By promoting interaction among students where all contribute to a group effort, practice language, and develop relationships with one another, anxieties are reduced, thereby enabling more effective learning.

While the four language skills are intertwined, English language learners will likely not be at the same proficiency level in all four skills. Teachers will need to modify their instruction in response to students' strengths and needs in each area, keeping in mind the following concepts:

- When providing listening input to ELLs, the language must be understandable and should contain grammatical structures and vocabulary that are just beyond the current level of English language development.
- Teachers should provide appropriate "wait time" for students to respond to questions. ELLs need time to process the question and formulate an answer.

- For cultural reasons and/or due to lack of oral language skills, ELLs may not express themselves openly or may consider it disrespectful to disagree with authority figures.
- Teachers should encourage students to verbalize their understanding of the content.
- Think-alouds increase oral language production.
- In addition to frontloading and comprehensible input from the teacher, ELLs need to practice effective reading strategies, such as asking questions, predicting, and summarizing.
- There is a direct correlation between speaking and writing; by increasing oral language production, writing skills can be increased. For example, teachers can have ELLs say and write vocabulary to connect oral and written language.
- Opportunities for students to write in English in a variety of writing activities should be built into the lessons. For example, reading-response logs and journaling are activities that increase written language production.

Teaching Strategies and Support for Principle 4

Listening skills Use audio recordings and read material aloud to develop English language learners' listening skills as well as fluency and accuracy.Idioms, colloquialisms, and slang Give explanations of any idioms, colloquialisms, or slang that arise.Oral communication activities Present specific oral communication activities. For example:

- telling or retelling stories
- role-playing
- giving instructions
- presenting a think-aloud
- explaining a process
- brainstorming
- critiquing a solutionSpeaking skills Model summarizing information and reporting. Then have students summarize and report.Reading comprehension skills Provide explicit teaching of reading comprehension skills. For example, teach or review summarizing, sequencing, inferring, comparing and contrasting, asking questions, drawing conclusions, distinguishing between fact and opinion, or finding main idea and details.

Reading strategies practice Have students practice using reading strategies. For example, ask them to:

- develop their own questions.
- write the facts and information in problems.
- identify key mathematics vocabulary.
\square Paraphrase Provide ELL-appropriate paraphrases of text questions.

Writing skills Have students practice writing skills.

- review or teach the steps of the writing process.
- have students create dialogue journals for sharing problem-solving processes.

Note-taking support Provide notetaking supports, such as writing templates, fill-in-the-blank guides, or other graphic organizers.

Self-monitoring Provide students with checklists for monitoring their own writing, such as checklists for revising, editing, and peer editing.
\square Peer review Pair ELLs with partners for peer feedback on their problem-solving processes.

Scoring rubrics Provide scoring rubrics for oral and written assignments and assessments. For example, students' writing can be evaluated for focus, ideas, order, writer's voice, word choice, and sentence structure. Students should be evaluated according to their proficiency levels.

Applying Principle 4 in digits

In the Lessons Enabling language production consists of students practicing their listening, speaking, reading, and writing skills. To develop English language learners' listening and speaking skills, use any lesson presentation. Have ELLs listen to the audio presentation as they read the text presented and then have them use the language of the presentation as they solve the problem.

In the Student Resources Each Launch activity includes opportunities for students to write (in their Companions) and report about their solutions.
4. Error Analysis A student looks at the graph below and says that the rate of change is $\frac{2}{1}$ and the initial value is 2 . Explain why this is incorrect.

Companion pages also include writing opportunities to explain mathematical terms and to analyze work. Students are asked to answer questions, explain their processes, and show understanding of key vocabulary.

In the Teacher Resource Prompts found in the Teacher Guide provide students with the opportunity to present their work and thereby practice their speaking skills.

EBConnect Your Learning Move to the Connect Your Learning screen. Use the Launch to talk about strategy. Some students may have written the equations first and then drawn the lines, while others did the reverse. Have students talk about the advantages and disadvantages of each approach. Students may benefit from hearing other opinions about how to approach a problem like this.

PRINCIPLE 5 Assess for Content and Language Understanding

An ever-increasing emphasis on assessment requires that all students-including English language learners-achieve the same high standards. Yet below-level language proficiency can have a negative impact on an ELL's success in the content areas. It is, therefore, essential to use assessment results as a way to identify an ELL's strengths and challenges.

Three types of assessments are key to instruction for all students, including ELLs: diagnostic assessment, formative assessment, and summative assessment.

Diagnostic assessment Diagnostic assessment is used for placing English language learners into the appropriate class, as well as for providing a diagnosis of strengths and challenges.

Formative assessment Formative

 assessment is part of the instructional process. It includes ongoing informal and formal assessment, reviews, and classroom observations. Informal assessments include class discussions, teacher observations, selfand peer-assessment, and teacher-student conversations. Formal assessments include quizzes, tests, and presentations.Formative assessment is used to improve the teaching and learning process-which is particularly important in regards to English language learners. By using formative assessments, teachers can target an ELL's specific problem areas, adapt instruction, and intervene earlier rather than later.

Summative assessment Summative assessment occurs at the end of a specific period and evaluates student competency and the effectiveness of instruction. Examples are mid-year and final exams, state tests, and national tests.

Federal and state law requires that all students, including English language learners, be assessed in reading, math, and science.

Assessment accommodations Assessment accommodations for ELLs can minimize the negative impact of the lack of language proficiency when assessing in the content areas. These accommodations can be used for formal and informal assessments.

Possible assessment accommodations include: time extensions, use of bilingual dictionaries and glossaries, repeated readings of problems, use of dual-language assessments, allowing written responses in the native language, and separate testing locations.

Teaching Strategies and Support for Principle 5

Informal assessment Use a variety of informal assessments for ELLs including retelling, demonstrating, and illustrating.Content area log Have students keep a "content area log." Use a two-column format with the headings What I Understand and What I Don't Understand. Follow up with students on the What I Don't Understand items so that they can move those items into the other column.

Portfolios Portfolios are a practical way to assess student progress. Provide specific examples of what to include in a portfolio, including examples of speaking and writing. Some portfolio items might be:

- written assignments
- recordings of speaking samples, oral presentations, or think-alouds
- exercise sheets
- scoring rubrics and written
evaluations by the teacher
- tests and quizzes

Formal assessments Use a variety of formal assessments such as practice tests, real tests, and oral and written assessments.Assessment format Create tests with a variety of assessment formats, including dictation, multiple choice, and open-response formats.

Standardized tests Have students practice taking standardized tests by using released test items. These are often available online from your state department of education or district website.

Academic vocabulary Explicitly teach the academic English words, phrases, and constructions that often appear in standardized test items. This might include best, both, except, and probably.

Restate directions When giving directions, restate the directions in simplified English, repeat the directions, and emphasize key words.

Repeat directions Verify a student's understanding of the directions by having the student repeat the directions in his/her own words.

Bilingual glossaries Provide students with bilingual glossaries of academic vocabulary.

Written assessments Writing portions of assessments are generally the most difficult for English language learners. Therefore, the writing process should be practiced. Teachers should carefully guide students through the prewriting step with examples of brainstorming, outlining, using a graphic organizer, etc.

Applying Principle 5 in digits

In the Lessons Diagnostic and formative assessment are provided in the lesson presentations. Teachers can use the Readiness Lesson as an informal diagnostic assessment to determine if students have sufficient mastery of foundational concepts to proceed with new material. Within all On-level Lessons, each Example ends with a Got lt? problem that serves as a formative assessment of understanding. For Intervention Lessons, the Journal pages provide formative assessment.

In the Teacher Resources Formal testing can be done electronically or on paper through exams generated by Math XL. Tests may be generated randomly or teachers can pick the specific problems to generate a customized test. When tests are taken electronically there is an automatic scoring feature.

In Homework The online option for homework provides students with immediate feedback on their work. When students provide a correct answer, they receive a message telling them so. When they are incorrect, they get a hint about what they may be doing wrong.

Student Access to the Online Curriculum

Dear Parent or Guardian,

Your child is enrolled in a math class that is using a new digital curriculum program for classroom instruction and student assignments. This program, called digits, is offered by Savvas Education, the world's leading education company. You and your child can access homework assignments and other materials through Pearson's online system.

The digits program offers teachers helpful tools for planning lessons, assigning student work, and tracking student progress. Students benefit from engaging, personalized digital lessons that build important math skills, provide feedback on progress, and offer the ability to complete school work from a computer with Internet access. We assure you in your role as parents and guardians that Savvas educational materials and the online system are safe and appropriate for students. If you have a home computer and Internet access, we encourage you to support your child in using this Savvas curriculum program while at home.

Getting started!

Accessing the program from home is simple and secure. Follow these steps to get started:
(1)

Go to www.mymathuniverse.com, which is the online student command center for digits. You and your student can log in 24/7 to study, do homework, and most important, you can check on the progress and math mastery of your child.Check the latest System Requirements to ensure that your home computer will run Pearson's online system. Simply click on the "Check your Computer Settings" hyperlink after you first log in through www. mymathuniverse.com.
(3) Go to www.mymathuniverse.com and use the username and password the teacher gave your child to log in. Your child may have already written this information on page vi in their digits Student Companion write-in worktext. Remember, the class URL is always www.mymathuniverse.com.

Sincerely,
Pearson Education

Dear Parent or Guardian,

Recently, more than 40 states in the United States have developed and adopted a set of academic standards in mathematics based on the Common Core State Standards. These standards, called the Common Core State Standards, were developed in collaboration with teachers, school administrators, and mathematics and education experts under the auspices of the bipartisan National Governors' Association and the Council for Chief State School Officers (CCSSO).

What are the Common Core State Standards?

These standards will serve as important benchmarks to ensure that all students are receiving high quality education and are well prepared for success in post-secondary education and in the workforce. Students will be assessed on a regular basis throughout their school career to monitor their progress toward meeting these benchmarks.

As individual states have adopted these new standards, they have committed to a shared grade-by-grade sequence of topics to be taught. For many states, this requires a shift from the instructional materials they currently use to materials that match both the content skills and the mathematical understandings contained in the

Common Core State Standards.

How will your student meet these standards?

Your child is using digits as his or her math program. This program was specially developed to provide comprehensive coverage of the Common Core State Standards. The digits program includes a Student Companion worktext. Take a look through it, and you'll notice that each lesson specifically targets one or more of the standards for mathematical content. (This is shown just below the lesson title.)

In addition to content standards, the Common Core State Standards include standards that describe the practices and abilities of very good math thinkers. Called Standards for Mathematical Practice, these standards develop particular mathematical skills and habits of mind. Because digits was developed specially for the Common Core State Standards, the program has the Standards for Mathematical Practice embedded in every lesson. You can help your child develop their mathematical practice by encouraging him or her to think about the questions found on the next pages of this letter. You will notice that each Launch and Focus Question specifically target one or more of the Standards for Mathematical Practice. However, others will be addressed throughout the lesson and homework.

Common Core State Standards

A Parent's Guide to the Standards for Mathematical Practice

As your child works through homework exercises, you can help him or her develop skill with these standards by asking some of these questions:

(1) Make sense of problems and persevere

 in solving them.- What is the problem that you are solving for?
- Can you think of a problem that you recently solved that might be similar to this one?
- How will you go about solving the problem? (i.e., What's your plan?)
- Are you progressing toward a solution? How do you know? Should you try a different solution plan?
- How can you check your solution using a different method?

(2) Reason abstractly and quantitatively.

- Can you write or recall an expression or equation to match the problem situation?
- What do the numbers or variables in the equation refer to?
- What's the connection among the numbers and variables in the equation?

(3) Construct viable arguments and critique the reasoning of others.

- Tell me what your answer means.
- How do you know that your answer is correct?
- If I told you I think the answer should be [a wrong answer], how would you explain to me why I'm wrong?

(4) Model with mathematics.

- Do you know a formula or relationship that fits this problem situation?
- What's the connection among the numbers in the problem?
- Is your answer reasonable? How do you know?
- What does the number-or the numbers-in your solution refer to?

Common Core State Standards

(5) Use appropriate tools strategically.

- What tools could you use to solve this problem? How can each one help you?
- Which tool is more useful for this problem? Explain your choice.
- Why is this tool [the one selected] better to use than [another tool mentioned]?
- Before you solve the problem, can you estimate the solution?

6 Attend to precision.

- What do the symbols that you used mean?
- What units of measure are you using? (for measurement problems)
- Explain to me what [term from the lesson] is.

Look for and make use of structure.

- What do you notice about the answers to the exercises you've just completed?
- What do different parts of the expression or equation you are using tell you about possible correct answers?

8 Look for and express regularity in repeated reasoning.

- What shortcut can you think of that will always work for these kinds of problems?
- What pattern(s) do you see? Can you make a generalization?
- What relationships do you see in the problem?

